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Abstract

Flutter is one of the most known instability phenomena. This condition occurs when a given
structure exhibits sustained, harmonic oscillations, sometimes leading to catastrophic events.
The prediction of flutter represents a crucial point for a correct and safe design. When fluid-
structure interactions produce dynamic instability, flutter analyses require accurate descrip-
tions of body deformations and aerodynamic loads. To this end, aerodynamic theories have
been coupled with structural models to develop aeroelastic analysis tools, whose reliability is
the results of a trade-off between the accuracy and the computational efficiency.

From a computational point of view, the most efficient formulation is based on the 1D assump-
tion, where the problem is reduced to a set of variables that only depends on the beam-axis
coordinate. Besides the well-known classical beam theories, several refined kinematic models
have been proposed, to study the stability of rotating blades and shafts. However, when these
structures are highly deformable or the material distribution involves non-classical structural
couplings, 2D and 3D solutions are still required.

Within this work we propose an advanced 1D formulation to analyse the stability of rotating
structures. The higher-order beam theories are obtained using the Carrera Unified Formulation
(CUF), which allows to derive, at least theoretically, an infinite number of kinematic models.
The Equations of Motion (EoM) for shafts and blades include the Coriolis term and the cen-
trifugal effects (spin softening and geometrical stiffening). For the subsonic flow regime, aero-
dynamic loads are defined following the unsteady strip theories proposed by Theodorsen and
Loewy. For the supersonic regime, the linear Piston theory is extended to structures rotating in
compressed air flow. The Finite Element Method (FEM) is used to solve the weak form of the
EoM.

Firstly, to evaluate the accuracy of 1D CUF elements, static and free-vibration analysis are
carried out on compact and thin-walled structures of isotropic, orthotropic and functionally
graded materials. Then, higher-order elements are used to study the dynamics of laminated
shafts, thin cylinders, discs and blades, which rotate about the longitudinal and transverse
axis. Results show the improved performance of the 1D CUF theories compared to 2D and 3D
solutions.

In order to evaluate the proposed aeroelastic formulation, we test different wing configura-
tions, including thin-walled box beams. The effects of the sweep angle and the lamination
scheme on flutter conditions are evaluated, and results are compared with plate solutions, ex-
perimental tests and aeroelastic analysis carried out with the Doublet Lattice Method (DLM).
Moreover, comparisons between Theodorsen and Loewy aerodynamic theories are presented



for a realistic rotary-wing model. In the last numerical examples, the linear Piston Theory is
used to describe the dynamics of thin plates with different aspect-ratio surrounded by com-
pressed air. For this cases, results are compared with an existing solution based on a non-linear
plate theory.



Sommario

Il flutter è sicuramente il più conosciuto fenomeno di instabilità dinamica. Quando tale instabilità si
verifica, la struttura presenta armoniche e auto-sostenute vibrazioni che, in casi sfortunati, possono
provocare il collasso della stessa. La previsione della condizione di flutter è pertanto un punto cruciale
per una corretta e sicura progettazione. Quando l’instabilità è dovuta ad interazioni tra la struttura e
il flusso circostante, le analisi aerelastiche richiedono descrizioni accurate del campo di deformazione e
delle distribuzioni di forze aerodinamiche a cui il corpo è assoggettato. A tal fine, teorie aerodinamiche e
strutturali vengono accoppiate in modelli aeroelastici, le cui affidabilità sono il risultato di un compro-
messo tra l’accuratezza dei modelli e il loro effettivo costo computazionale.

L’approssimazione unidimensionale, certamente la più efficiente, prevede la riduzione del problema reale
(definito in tre dimensioni) ad un set di variabili dipendenti da una solo parametro. La dinamica e la
stabilità di alberi e superfici portanti in rotazione sono state largamente studiate con l’uso delle teorie
trave, concepite secondo le classiche assunzioni di Eulero-Bernoulli e Timoshenko o basate su ipotesi cin-
ematiche meno stringenti. Tuttavia, quando tali strutture sono altamente deformabili o la distribuzione
del materiale causa accoppiamente strutturali tra differenti modi di deformazione, ci si deve affidare alle
soluzioni bi- e tridimensionali, con un conseguente aumento del costo computazionale.

Questa tesi si propone di fornire una formulazione 1D avanzata per lo studio della stabilità delle strut-
ture rotanti in presenza o meno di un fluido circostante. Le teorie unidimensionali vengono concepite
secondo la Carrera Unified Formulation (CUF), la quale consente di derivare un numero teoricamente
infinito di modelli cinematici. Le equazioni del moto di alberi e travi rotanti includono, oltre al termine di
Coriolis, lo ’spin softening’ e la rigidezza geometrica dovuta all’effetto centrifugo. I carichi aerodinamici
in regime di flusso subsonico vengono definiti tramite le teorie instazionarie proposte da Theodorsen e
Loewy . In regime supersonico, invece, le forze aerodinamiche agenti su piastre rotanti in un flusso di
fluido compresso vengono calcolate secondo la ’piston theory’ lineare. Le equazioni di governo vengono
risolte con il metodo degli elementi finiti.

Al fine di valutare l’accuratezza degli elementi CUF 1D, numerose analisi statiche e di vibrazioni libere
sono state effettuate su strutture in materiale isotropo, ortotropo e funzionalmente graduato. Successi-
vamente, gli stessi elementi sono utilizzati per valutare la dinamica di una vasta gamma di strutture
rotanti, comprendente alberi compatti laminati, cilindri e dischi sottili e pale. I risultati sono confrontati
con soluzioni bi- e tridimensionali, confermando l’ efficacia dell’approccio adottato.

Il modello aeroelastico proposto viene testato considerando diverse configurazioni alari, tra cui travi
laminate in materiale ortotropo a parete sottile. Gli effetti dell’angolo di freccia e dello schema di lami-
nazione sulle condizione di flutter vengono attentamente analizzati. I risulati proposti sono confrontati
con soluzioni bidimensionali, evidenze sperimentali e con valori ottenuti tramite l’impiego del Dou-



blet Lattice Method. Inoltre, viene studiata la risposta aeroelastica di una realistica pala di elicottero
in rotazione tramite gli approcci instazionari di Theodorsen (esteso al caso rotante) e Loewy. Infine, è
presentato lo studio aeroelastico di piastre rotanti in un flusso supersonico di aria compressa.
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Chapter 1

Introduction

According to Collar’s definition, aeroelasticity is "the study of the mutual interaction that takes place
within the triangle of the inertial, elastic, and aerodynamic forces acting on structural members exposed
to an airstream, and the influence of this study on design". In the past, the fluid-structure interaction
(FSI) has brought to catastrophic events due to sudden failures of bridges, airplanes, helicopters etc. A
correct and safe design must require, therefore, an accurate prediction of aeroelastic phenomena. Un-
fortunately, FSI analyses are, in most cases, too computationally expensive, hence a trade off between
accuracy and cost is often mandatory.
This thesis aims to present simple tools for the study of the dynamics and stability of shafts and blades.
Simple aeroelastic formulations based on higher-order beam theories and unsteady strip approaches are
proposed for flutter predictions.

1.1 Flutter and aeroelastic tools

Flutter is defined as the dynamic instability of an elastic body in an airstream that is subjected
to large lateral aerodynamic loads and it is one of the most important aeroelastic phenomena.
The flutter condition, defined by the critical speed (VF ) and by a circular frequency (ωF ) oc-
curs when a given structure exhibits sustained, harmonic oscillations. In order to predict the
borderline condition, it is paramount to know the interactions between elastic deformations
and aerodynamic loads imposed by fluid motion. To this end, many aeroelastic theories have
been developed. The aeroelastician usually needs information on two- and three-dimensional
external flows and, in order to simplify the mathematical theories, a number of assumptions
are usually made.

Fixed-wing aeroelasticity

A number of aerodynamic approaches was presented in the first half of the twentieth cen-
tury by important aerodynamicists such as Cicala (Cicala, 1934-1935), Ellenberger (Ellenberger,
1936), Kussner (Kussner, 1936), Burgers with von Karman (von Karman and Burgers, 1943) and,
in particular, Theodorsen (Theodorsen, 1935). The proposed strip theories and their modifica-
tions, properly combined with simplified structural models, have allowed simple but reliable
tools to be developed. For instance, on the basis of beam-plate approach, in which the bending
stiffness, the torsional stiffness and the secondary stiffnesses (bending-torsion, warping etc.)
are reduced to the beam equivalent stiffnesses (EI, GJ, K etc.), wings (Guo et al., 2003, 2006; Qin
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14 CHAPTER 1

and Librescu, 1985) and bridge desks (Banerjee, 2003) were accurately studied. Unfortunately,
this structural approach is no longer considered reliable when further couplings occur due to
the distribution of the materials. For this reason, more refined theories have been developed.
Over the years, Librescu et al. considered various aspects related to FSI such as divergence
conditions of swept-forward wings (Librescu and Khdeir, 1988), effects of external stores (Gem
and Librescu, 1998) and aeroelastic tailoring of composite structures (Gem and Librescu, 2000)-
(Qin and Librescu, 2003) on both static and dynamic stability, the response to gust (Qin et al.,
2002) and blast loadings (Marzocca et al., 2002). In most of these papers, the wing cross-section
was either rectangular or biconvex, and the non-classical effects, such as warping deforma-
tions, transverse shear and non-uniform torsion were included in a sophisticated beam theory.
Recently, the same structural model was used in (Ji-Seok et al., 2013) and (Masjedi and Ovesy,
2014) where an attempt was made to suppress the instability and a number of interesting con-
siderations on the different structural constitutive assumptions was presented, respectively. In
particular, since the computation of the bending and torsional stiffnesses depends on the choice
of the constitutive equations, Masjedi and Ovesy (2014) showed that the results of aeroelastic
analyses can differ to a great extent, even as much as 40%. Moreover, other improvements were
proposed by Patil et al. in (Cesnik et al., 1996)-(Patil, 1997). The cross-sectional stiffnesses of
composite box beams were first computed by means of an asymptotically correct formulation
and then included in a non-linear beam modeling framework. The effectiveness of this ap-
proach was pointed out in (Palacios and Epureanu, 2011), where Palacios et al. dealt with the
aeroelastic behaviour of highly flexible wings.
In the 1970s, the development of three dimensional aerodynamic panel/lifting surface methods
enabled prediction of flutter conditions and gust responses of new structural configurations.
For instance, the Doublet Lattice Method (DLM)(Albano and Rodden, 1969) and its refinements
(Rodden et al., 1998) were extensively used for the study of non-planar configurations (Kalman
et al., 1970), non-conventional planform shaped wings (Lan, 1979) and complex wing/tail in-
teractions in both subsonic and supersonic flow (Yurkovich, 2003). Panel theories have been
usually combined with bi-dimensional structural models for the description of the above com-
plex structures. Nowadays, the rapid increase of the computational power has motivated the
development in the area of computational fluid dynamics (CFD). Over the last 30 years, the
CFD-based aeroelasticity progressed from full potential theories to problems governed by the
Navier-Stokes equations. Recent works offer interesting overviews of CFD-aeroelastic tools
(Bennet and Edwards, 1998; Huttsell et al., 2001) furthermore providing useful information
about the emerging trends in the aeroelasticity field (Livne, 2003). From a structural point of
view, the CFD simulations can be coupled with finite element models, in which non-linear el-
ements may be used in order to include either geometrical effects or large deformations. A
detailed paper about non-linear structural models can be found in Demasi and Livne (2009).

Rotating blade aeroelasticity

As far as the aeroelasticity of rotary-wings is concerned, the basic problem becomes more com-
plex due to the geometric nonlinearities that must be taken into account in both elastic and
aerodynamic terms. This need has driven the development of suitable structural and aerody-
namic theories as confirmed by the considerable number of articles available in the literature.
Almost 50 years ago, Loewy (1969) provided a thorough overview on a wide range of topics
related to the dynamics and aeroelasticity of rotary-wings such as flap-lag flutter, pitch-lag flut-
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ter and ground and air resonance. Although being more limited in scope, other contributions
on the study of classical flutter conditions and unsteady aerodynamic theories were proposed
by Ham (1973) and Dat (1973), respectively. In that period, the aerodynamic models for the
instability predictions were basically extensions of steady and quasi-steady strip theories con-
ceived for fixed-wings. The first important rotary-wing unsteady approach for hover, based
on Theodorsen’s model, was proposed by Loewy (1957). Although in an approximate man-
ner, this theory takes into account the effect of the spiral returning wake beneath the rotor.
More details about Loewy’s theory will be provided in next sections. Other valuable aerody-
namic models were proposed on the basis of Greenberg’s theory (Greenberg, 1947). According
to this approach, a pulsating velocity variation and a constant pitch angle were included in
Theodorsen’s model. These modifications were extended to the case of rotary-wings by Fried-
mann and Yuan (1977), in which Theodorsen’s theory, Loewy’s theory for both incompressible
and compressible flows and Possio’s theory were used for the coupled flap-lag-torsional aeroe-
lastic problem of a rotor blade in hover. The authors pointed out that the above modifications
should be included to realistically reproduce the aeroelasticity of rotary-wings, where the as-
sumptions commonly used in deriving strip theories (1 - cross sections are assumed to perform
only simple harmonic pitching and plunging oscillations about a zero equilibrium position; 2
- the velocity of oncoming airflow is constant; 3 - usual potential small-disturbance unsteady
aerodynamics are assumed to apply) are intrinsically violated. The modified strip theory with
the quasi-steady approximation was used to study the stability of composite helicopter blades
with swept tips both in hover and in forward flight (Yuan and Friedmann, 1995). The swept-tip
blades were modeled by means of non-linear 1D finite element with the inclusion of transverse
shear deformations and out-of-plane warping. These results were recently used to verify the
accuracy of a nonlinear structural formulation valid for slender, homogeneous and twisted
blades (Piccione et al., 2010). Other analyses on advanced geometry blades were carried out in
(Bir and Chopra, 1994) with the purpose of evaluating the effects of sweep and droop on both
rotor aeroelastic stability and rotorcraft aeromechanical stability. The evolution of the mechan-
ics of helicopter blades, focusing on the aeroelastic and aerodynamic issues, was extensively
discussed in (Conlisk, 1997; Friedmann, 2004; Friedmann and Hodges, 1977, 2003).
Although the aeroelasticity of large wind turbine blades is inherently different, several related
aeroelastic problems were solved using rotary-wing theories (Friedmann, 1976; Kaza and C.E.,
1976, May; Ormiston, 1973). Also in this case, interesting reviews are available (Friedmann,
1980; Hansen et al., 2006; Rasmussen et al., 2003), in which the response problems of an iso-
lated wind turbine blade and a complete rotor/tower configuration were detailed discussed.

1.2 Structural models for rotary-wings

A thorough understanding of the dynamics of rotating blades is the starting point for the study
of fatigue effects, forced-response and flutter instability, which occur in airplane engines, heli-
copters and turbomachinery. The modelling of rotating structures is usually made with beam
formulations. Many researchers addressed the problem of the rotating beam by simplifying
both equations of motion and displacement formulations. For instance, Banerjee (2000); Baner-
jee et al. (2006), Ozge and Kaya (2006), Mei (2008) and Hodges and Rutkowski (1981) limited
their studies to the flexural vibrations of both uniform and tapered Euler-Bernoulli rotating
beams using, respectively, the Dynamic Stiffness Method, the Differential Transform Method
and a variable-order finite element approach. The assumption that the beam deforms only in
bending mode is restrictive, since the coupling between the axial deformation and the lagwise
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motion can be significant. To take into account this coupling the introduction of the Coriolis
force becomes mandatory. For this reason, Huang et al. (2010) solved the complete motion
equations of Euler beams using the power series solution, and the Finite Element Method (Tsai
et al., 2011). Improvements were achieved with the introduction of enhanced displacement
fields over the blade cross-section. Several studies were conducted on the development of
theories for the rotating structures based on the Timoshenko model, where the Coriolis term
was (Stoykov and Ribeiro, 2013) or was not considered (Banerjee, 2001; Lee and Kuo, 1993;
Rao and Gupta, 2001; Yoo et al., 2005). In all these works, the generic rotating blade is as-
sumed to be a compact structure constituted by isotropic material or by orthotropic laminae.
However, the design of advanced rotor blades was strongly affected by the advent of compos-
ite materials, which combine a high specific strength and stiffness with simplified formability.
These properties produce light and efficient blades, whose dynamic characteristics usually in-
volve phenomena that cannot be detected by the use of classical models. For this reason, a
considerable number of refined theories were introduced with the purpose of describing the
rotating composite blade behaviour. For instance, Song et al. presented in (Song and Librescu,
1997b) a structural model encompassing transverse shear, secondary warping deriving from
the assumption of the non-uniform torsion along the longitudinal axis and the effect of the
heterogeneity of the materials. They observed that, by discarding the Coriolis term, the equa-
tions described separately the flap-lag deformation and the extension-twist motion, and within
this context, they examined the ply orientation effects. Contrary to this ad-hoc formulation,
Chandiramani et al. (2002) provided a geometrically nonlinear theory for analyzing the rotat-
ing composite thin-walled box beam, in which the non-classical effects were captured in a gen-
eral way. The linearized equations of motion were solved with the Modified Galerkin Method
and the Coriolis term was disregarded. Aditionally, the authors extended their formulation to
pre-twisted composite blades (Chandiramani et al., 2003). Interesting studies on controlling
thin-walled composite blades via piezoelectric patches were presented in (Na et al., 2003; Song
et al., 2002). Jung et al. (2001) developed a one-dimensional finite element based on a mixed
variational approach in which both displacement and force formulations were used. The walls
of the structures considered were modelled as shell and the global deformation was described
by the Timoshenko beam model. This model is suitable for composite structures with open and
closed contour. Detailed reviews about the dynamics of rotating composite blades are provided
in (Hodges, 1990; Jung et al., 1999).

1.3 Structural models for spinning shafts

This section aims to provide an overview (even if not comprehensive) of structural theories
used to analyse the dynamics of spinning structures.
The classical beam theory proposed by Euler and Bernoulli has been adopted by many re-
searchers. For instance, Bauer (1980) presented an analytical approach to investigate the vi-
brational behaviour of a beam rotating with constant speed about its longitudinal axis for all
boundary conditions. About ten years later, Chen and Liao (1991) used the assumed-modes ap-
proximate method to evaluate how the dynamic behavior of a rotating slender beam is affected
by the ratio of moments of inertia of the cross-section and the pre-twisted angle. Furthermore,
by using the same structural model, Banerjee and Su (2004) solved the differential equations of
motion by extending the field of application of the Dynamic Stiffness Method (DSM) to rotating
structures. Unfortunately, these solutions are inadequate for short and stubby bodies in which
rotary inertia and shear deformations are important. In order to take into account these effects,
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more refined theories have been widely employed. In fact, Zu and Han presented analytical so-
lutions for free flexural vibrations of a spinning, finite Timoshenko beam subjected to a moving
load for the six classical boundary conditions (Jean Wu-Zheng and P.S. Han, 1992). To consider
elastic supports, Choi et al. (2000) presented an efficient and accurate quadrature method to
investigate the dynamics of a spinning shearable beam. On the other hand, in the framework
of DSM, Curti (Curti et al., 1991), (Curti et al., 1992) analyzed the vibrational behaviour of mod-
erate thick shafts by adding rotatory inertia and shear deformation effects to Euler-Bernoulli’s
model. In (Sheu and Yang, 2005), the authors showed that both whirl and critical speeds can be
analytically expressed as a function of a geometric parameter (slenderness ratio) of a Rayleigh
beam. Furthermore, this parameter limits the number of critical speeds.
Several experimental tests demonstrated the advantages of orthotropic materials over their
isotropic counterparts (Bauchau, 1981; Zinberg and Symmonds, 1970; Zorzi and Giordano,
1985). As a consequence, the design of rotors has demanded the development of adequate
and reliable structural models. For instance, Bert and Kim developed one-dimensional mod-
els, based on Euler-Bernoulli (Bert and Kim, 1992) and Bresse-Timoshenko (Bert and Kim, 1995)
theories, which included bending-twisting coupling. The critical speeds were in good agree-
ment with the results obtained through both shell and experimental approaches. Naturally,
when shear effects become important, results obtained with the Euler-Bernoulli theory are not
accurate. In (Chen and Peng, 1998), the authors investigated the stability of composite spinning
cylinders subjected to compressive loads using Timoshenko’s model and the equivalent mod-
ulus beam theory (EMBT). Critical speeds and effects due to a disk location were also studied
under these assumptions. Another contribution was made by Chang et al. (2004), who devel-
oped a simple first-order shear deformation theory for shafts supported by bearings modeled
as springs and viscous dampers. The constitutive relations were derived directly from the
equations of 3D continuum mechanics using coordinate trasformations.
To overcome the limitations of the equivalent modulus approach, Singh and Gupta (1996) first
proposed a refined beam formulation derived from a layerwise shell theory (LBT) and then, in
(Gubran and Gupta, 2005), presented a modified EMBT that included bending-twisting, shear-
normal and bending-stretching coupling effects. The obtained results were used by Sino et al.
(2008) to assess their simplified homogenized beam theory (SHBT), where the stiffness param-
eters are evaluated using an energy formulation that takes into account several contributions,
such as Young’s modulus, the shear modulus, the distance from the shaft axis and the thick-
ness of each rotor layer. The results were in good agreement with those presented by Gupta
et al.. Other attempts have also been made to improve displacement theories. Among these
formulations, Librescu et al. provided a higher order model which incorporates the warping
and torsion of thin-walled anisotropic spinning structures. Critical speeds as well as stabil-
ity were investigated considering thin-walled boxes (Song and Librescu, 1997a; Song et al.,
2000) and cylinders (Na et al., 2006). When the assumptions of beam theories are too restric-
tive, two- and three-dimensional formulations become useful. For instance, in (Kim and Bert,
1993), the authors compared a number of shell theories (Loo’s, Morley’s, Love’s, Donnell’s and
Sanders’s theories) to determine the critical speeds of the shaft examined in (Zinberg and Sym-
monds, 1970). All these models yielded accurate results, except Donnell’s theory, which was
not effective for long shafts. Another example is (Ramezani and Ahmadian, 2009), in which
the layerwise theory was combined with the Wave Propagation Approach for rotating lami-
nated shells under different boundary conditions. Interesting results were presented in (Zhao
et al., 2002), in which the dynamics of rotating cross-ply laminated cylinders was considered.
The structure was reinforced with stringers and rings whose stiffness was considered either
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separately or smeared over the shell surface. As expected, the number of stiffeners had a re-
markable effect on the backward and forward frequencies. Moreover, in (Chatelet et al., 2002),
a disk-shaft assembly was discretized with shell finite elements, considering a cyclic symmetry
of the structure; three analyses were carried out with different numbers of degrees of freedom.
This assumption allowed a considerable reduction of the computational cost.
Comprehensive overviews of rotor dynamic phenomena and classical analysis approaches can
be found in (Genta, 2005; Hua et al., 2005; Rao, 1985).

1.4 Carrera Unified Formulation

Carrera’s Unified Formulation (CUF) offers a procedure to obtain refined structural models, in
which the order and the type of theories are free input parameters. CUF was first developed
for plate and shell theories. A comprehensive description of possible approaches for laminated
plates and shells based on both displacement and transverse stress assumptions were provided
in Carrera (2002, 2003). Later, Ballhause et al. (2004) investigated the static and dynamic behav-
ior of multilayered plates embedding piezo–layers. The results show that CUF is able to lead
to a quasi–3D description of the global and local characteristics of piezoelectric plates. Other
assessments were presented in (Carrera, 2004), where the vibrational free response of homoge-
neous and multilayered simply supported plates was evaluated. Carrera et al. (2007) used CUF
to analyze multi–field problems related to multilayered plates subjected to thermal, mechani-
cal and electric loads. In (Carrera et al., 2008), same analyses were performed also considering
a magnetic load. Moreover, Carrera and Giunta carried out failure analyses for simply sup-
ported, isotropic and orthotropic plates using the failure criteria developed by Von Mises (Car-
rera and Giunta, 2008), Tsai–Hu, Tsai–Hill, Hoffman and Hashin (Carrera and Giunta, 2009).
Regarding functionally graded materials (FGM), Brischetto investigated plates subjected to a
transverse mechanical load (Brischetto and Carrera, 2010) using CUF and Reissner’s mixed
variational theory. Within the same topic, Neves et al. provided static, free vibration and buck-
ling analysis of FGM plates (Neves et al., 2012b) and shells (Neves et al., 2012a) by means of a
meshless technique.
In the latest years, CUF has been extended to the beam model. Carrera and Giunta tested the
performance of higher–order 1D theories, using N–order Taylor type expansions of the sec-
tion coordinates in order to define the displacement variables (Carrera and Giunta, 2010). The
study was carried out on isotropic beams with rectangular and I–shaped cross–sections and the
governing differential equations were solved via Navier type closed-form solution. In (Carrera
et al., Sept. 2009), displacement unknowns were expanded using N-order Lagrange polyno-
mials, which were defined on a set of sampling points belonging to the section. Carrera et al.
(2010a) analysed the static behavior of a beam with an airfoil–like section subjected to a bending
load using Taylor-like elements. The authors demonstrated that the use of higher–order theo-
ries improves the flexibility of the beam element as well as the accuracy of the displacement,
stress and strain distributions over the cross–section. Beam formulation was also employed to
analyse the static behavior of thin-walled structures, bridge-like cross-sections (Carrera et al.,
2012b), furthermore, to present buckling and static analyses of laminated composite beams
(Ibrahim et al., 2012),(Catapano et al., 2011). As for the Taylor-like model, it has been shown
that the number of terms that should be retained for each of the considered beam theories is
closely related to the problem addressed. A comprehensive discussion of this issue is pro-
posed by Carrera and Petrolo (2011a). As far as free-vibrational analyses are concerned, the dy-
namic characteristics of different beam sections and wing model are presented in (Carrera et al.,
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2011b, 2012a; Petrolo et al., 2012). Other investigations have been carried out on hollow cylin-
drical reinforced structures (Carrera et al., 2013f), laminated composite (Giunta et al., 2013) and
functionally graded beams (Giunta et al., 2011). Besides Taylor- and Lagrange-based expan-
sions, several displacement theories obtained by means of combinations of different functions
(trigonometric, exponential, hyperbolic etc.) have been recently tested on laminated structures
made of either composite (Carrera et al., 2013b,d) or functionally graded (Daoud et al., 2014)
materials. Other encouraging results have also been obtained in the rotordynamics field by
analyzing both rotating blades (Carrera et al., 2013c) and spinning shafts (Carrera and Filippi,
2014; Carrera et al., 2013a) (some results are reported in this thesis). Regarding structure-fluid
interactions, CUF elements have already been used with both Vortex (Carrera et al., 2013e;
Varello et al., 2011, 2013) and Doublet (Pagani et al., 2014; Petrolo, 2012, 2013) Lattice method
and, for supersonic flows, with the Piston theory (Carrera and Zappino, 2014b; Carrera et al.,
2014c).
Many other papers exploit the features of CUF, but for a thorough and clear description we
refer to (Carrera et al., 2014a, 2011a).





Chapter 2

Structural models

In this chapter, Carrera’s Unified Formulation (CUF) is presented. This formulation allows, at least
theoretically, the definition of an infinite number of structural theories going beyond the assumptions of
the classical refined beam models. The number and the kind of functions used within the displacement
field are input parameters of the formulation and determine the class of the 1D theory. A number of
Equivalent-Single Layer (ESL) theories and the Layer-Wise (LW) approach are briefly discussed in the
following.

2.1 Preliminaries: geometry and material arrays

We introduce the transposed displacement vector

u(x, y, z) =
{

ux uy uz
}T

(2.1)

where x, y, and z are orthonormal axes, as shown in Fig.2.1. The cross-section of the structure

A L

Figure 2.1 Structural reference system

is A and the longitudinal axis is 0≤ y ≤ L. The stress, σ, and strain, ǫ, components are grouped
as

σp =
{

σzz σxx σzx
}T

, ǫp =
{

ǫzz ǫxx ǫzx
}T

σn =
{

σzy σxy σyy
}T

, ǫn =
{

ǫzy ǫxy ǫyy
}T (2.2)

21
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Figure 2.2 Physical and material reference system

The subscript "n" stands for those terms lying on the cross-section, while "p" stands for the
terms lying on planes which are orthogonal to A.
The strains are obtained as

ǫp = Dpu

ǫn = Dnu = (Dnp +Dny)u
(2.3)

where Dp and Dn are differential operators whose explicit expressions are

Dp =










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0 0
∂

∂z

∂
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0 0
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
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




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0 0

0
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(2.4)

Constitutive laws are introduced to obtain the stress components,

σ = C̃ǫ (2.5)

On the basis of Eq.s 2.2, the previous equation becomes

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn
(2.6)

Both laminated box beams and cylinders can be considered constituted by a certain number
of either straight or curved plates of orthotropic material, whose material coordinate systems
(1,2,3) generally do not coincide with the physical coordinate system (x,y,z) (see Fig.2.2). Using
this approach, the matrices of material coefficients of the generic material k are:

C̃
k

pp =





C̃k
11 C̃k

12 C̃k
14

C̃k
12 C̃k

22 C̃k
24

C̃k
14 C̃k

24 C̃k
44



 , C̃
k

pn =





C̃k
15 C̃k

16 C̃k
13

C̃k
25 C̃k

26 C̃k
23

C̃k
45 C̃k

46 C̃k
43



 , C̃
k

nn =





C̃k
55 C̃k

56 C̃k
35

C̃k
56 C̃k

66 C̃k
36

C̃k
35 C̃k

36 C̃k
33





(2.7)
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On the other hand, for the FG materials (FGM), the matrices of material coefficients are

C̃
k

pp =





C̃k
11 C̃k

12 0

C̃k
12 C̃k

22 0

0 0 C̃k
66



 , C̃
k

pn =





0 0 C̃k
13

0 0 C̃k
23

0 0 0



 , C̃
k

nn =





C̃k
55 0 0

0 C̃k
44 0

0 0 C̃33





(2.8)
where the Young’s modulus (E) and Poisson’s ratio (ν) depend on the coordinates (x,y,z) of the
considered point.
For the sake of completeness, the explicit forms of the coefficients of the matrices C̃ are reported
in Appendix A.
Models with constant and linear distributions of the in-plane displacement components, ux
and uz, require modified material coefficients to overcome Poisson locking (see (Carrera et al.,
2011a)). The correction process is based on the assumption of null transverse normal stresses,
σxx and σzz , while the corresponding strain components, ǫxx and ǫzz, are accordingly calcu-
lated and substituted in the σyy and σxy expressions. These coefficients are used in the afore-
mentioned linear cases. A more comprehensive analysis of the effect of Poisson locking and its
correction can be found in Carrera et al. (2010b) and Carrera and Petrolo (2011b).

2.2 Carrera unified formulation

The unified formulation of the beam cross-section displacement field is described by an expan-
sion of generic functions

u(x, y, z, t) = Fτ (x, z)uτ (y, t), τ = 1, 2, ....,M (2.9)

where Fτ (x,z) are functions of the cross-section coordinates x and z, uτ (y,t) is the displacement
vector, and M stands for the number of terms of the expansion. According to the generalized
Einstein notation, the repeated subscript τ indicates summation. The choice of Fτ and M is
arbitrary, meaning that different base functions of any-order can be taken into account to model
the kinematic field of a beam above the cross-section.

2.2.1 Equivalent-Single Layer Approach: ESL

The ESL approach provides a homogenization of the cross-sectional properties of the struc-
ture through summation of the contributions of each constituent part. This process yields an
unique set of variables for the whole structure. Following this procedure, a number of different
displacement theories has been considered in this work and some examples are outlined below.

Taylor-like expansions: TE 1D class

The first class considered uses Taylor-like expansions, which are obtained by means of 2D poly-
nomials xizj (i and j are positive integers). These models have been used in many applications
and their capabilities have been widely discussed in the literature. For sake of completeness,
Eqs.2.10 and 2.11 show the TE models of second (TE2) and third (TE3) order, respectively

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 (2.10)

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6
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ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10
(2.11)

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

Regarding Eq.2.11, the refined expansion has 27 generalized displacement variables: three con-
stant, six linear, nine parabolic and twelve cubic terms. The classical beam theories can be
derived as particular cases of the first order Taylor-like expansion (TE1). Indeed, to obtain the
first-order shear deformation theory (TBT) of Eq.2.12, the linear terms, ux2 , ux3 , uz2 , uz3 can be
neglected, and θ(y) and φ(y) are assumed equal to uy2 and uy3 . On the other hand, the Euler-
Bernoulli (EBBT) beam model requires an additional condition resulting in the penalization
of ǫxy and ǫzy. This condition can be imposed using a penalty technique in the constitutive
equations.

ux = u0x (y)
uy = u0y (y) +θ (y) x +φ (y) z
uz = u0z (y)

(2.12)

Advanced Theories based on Trigonometric and Exponential Expansions

Other ESL theories are obtained adopting trigonometric and exponential functions. In these
cases, the displacement fields become

ux = sin
(πx

a

)

ux1 + cos
(πx

a

)

ux2 + sin
(πz

b

)

ux3 + cos
(πz

b

)

ux4 + sin
(

2
πx

a

)

ux5 + . . .

uy = sin
(πx

a

)

uy1 + sin
(πx

a

)

uy2 + sin
(πz

b

)

uy3 + cos
(πz

b

)

uy4 + sin
(

2
πx

a

)

uy5 + . . .

uz = sin
(πx

a

)

uz1 + sin
(πx

a

)

uz2 + sin
(πz

b

)

uz3 + cos
(πz

b

)

uz4 + sin
(

2
πx

a

)

uz5 + . . .

and

ux = e(
x
a)ux1 + e(

z
b )ux2 + e(2

x
a)ux3 + e(2

z
b )ux4 + . . .

uy = e(
x
a)uy1 + e(

z
b )uy2 + e(2

x
a)uy3 + e(2

z
b )uy4 + . . .

uz = e(
x
a)uz1 + e(

z
b )uz2 + e(2

x
a)uz3 + e(2

z
b )uz4 + . . .

where a, b are the main cross-section dimensions.
Advanced zig-zag Theories
Murakami (1986) introduced his function in the first order shear deformation theory with the
purpose of reproducing the zig-zag shape for the displacements of laminated plates. Due to the
intrinsic anisotropy of multilayered structures, the first derivative of the displacement variables
in the z−direction is discontinuous. The above function is able to describe the aforementioned
discontinuity (see Fig.2.3).
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Figure 2.3 Physical and material reference system

Using the zig-zag function within the CUF framework, in the following, all theories containing
this term are identified with the exponent (zz). For example, TE2zz :

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + (−1)kζkux7Z

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + (−1)kζkuy7Z

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + (−1)kζkuz7Z

where ζk = 2zk/hk is a non-dimensional layer coordinate and hk the thickness of the kth−layer.
The exponent k changes the sign of the zig-zag term in each layer.

Advanced Theories based on Miscellaneous Expansions

To further improve the kinematic model, we can combine the different functions, therefore
obtaining miscellaneous expansions. One expansion is given below:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 + e(1
x
a)ux6 + e(1

z
b )ux7 + sin

(

3
πx

a

)

ux8

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 + e1(
x
a)uy6 + e(1

z
b )uy7 + sin

(

3
πx

a

)

uy8

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 + e(1
x
a)uz6 + e(1

z
b )uz7 + sin

(

3
πx

a

)

uz8

Further cases will be directly described in the numerical discussion.

2.2.2 The Layer-Wise Approach: LW

According to the LW approach, a different set of variables may be assumed for each part that
constitutes the structure. Therefore, the homogenization process is only conducted in corre-
spondence to the shared interfaces between two cross-sectional regions. Although the La-
grange 1D class can be also used in the ESL framework, its main feature is the capability to
provide an accurate component-wise description (therefore layer-wise) of the structure.

Lagrange expansion (LE) 1D class
LE models use Lagrange polynomials to build 1D higher-order theories and the isoparametric
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formulation is exploited to deal with arbitrary shaped geometries. For the nine-point element
(L9) (see Fig.2.4), the interpolation functions are given by

Fτ = 1
4 (r

2 + r rτ )(s
2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s

2 − s sτ )(1− r2) + 1
2r

2
τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(2.13)

where r and s range from −1 to +1. The displacement field given by an L9 element is

(-1, 1)

(-1, -1)

(1, 1)

(1, -1)

(0, 1)

(0, -1)

(-1, 0) (1, 0)

(0, 0)

r

s

1 2 3

4

567

8 9

Figure 2.4 Cross-section L9 element

ux = F1 ux1 + F2 ux2 + F3 ux3 + F4 ux4 + F5 ux5 + F6 ux6 + F7 ux7 + F8 ux8 + F9 ux9

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4 + F5 uy5 + F6 uy6 + F7 uy7 + F8 uy8 + F9 uy9
uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4 + F5 uz5 + F6 uz6 + F7 uz7 + F8 uz8 + F9 uz9

(2.14)
where ux1 , ..., uz9 are the displacement variables of the problem and they represent the transla-
tional displacement components of each of the nine points of the L9 element. This means that
LE models provide elements that only have displacement variables. According to Carrera and
Petrolo (2011b), the beam cross-section can be discretized using several L-elements for extra
refinements, as shown in Fig.2.5 where two L9 elements are assembled.
For further details on Lagrange 1D models, we refer to (Carrera and Petrolo, 2011b,c) where
L3, L4, L6 and L16 sets are also described.

2.3 The Finite Element formulation

The governing equations of a system can be derived by means of different variational princi-
ples of Mechanics such as the Principle of Virtual Displacements (PVD), D’Alembert’s Principle
and Hamilton’s Principle. Regardless of the chosen procedure, with the use of CUF, all contri-
butions in the governing equations (mass, stiffness, damping and loading arrays) are written
in terms of ’fundamental nuclei’, whose forms are independent of the order of models. In order
to overcome the limitations of the analytical approaches, the weak form of the governing equa-
tions is solved using the Finite Element method (FE). The generalized displacement vector (see
Eq.2.9) is given by :

uτ (y, t) = Ni(y)qτi(t) (2.15)
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z

x

Figure 2.5 Two assembled L9 elements in actual geometry.

where Ni are the shape functions and qτi(t) is the nodal displacement vector:

qτi(t) =
{

quxτi
quyτi

quzτi

}T
i = 1, . . . , Nnode (2.16)

with ’Nnode’ as the number of nodes of the element. Hereafter, the vector dependencies on
time (t) and spatial coordinates (x,y,z) will be omitted. Here three different finite elements
are consider to provide a linear (B2), a quadratic (B3) and a cubic (B4) interpolation of the
displacement variable along the beam axis. The lagrangian shape functions of the B2, B3 and
B4 elements are thus defined as,

N1 =
1
2(1− r), N2 =

1
2(1 + r),

{

r1 = −1
r2 = +1

N1 =
1
2r(r − 1), N2 =

1
2r(r + 1), N3 = −(1 + r)(1− r),







r1 = −1
r2 = +1
r3 = 0

N1 = − 9
16(r +

1
3)(r − 1

3 )(r − 1), N2 =
9
16 (r +

1
3)(r − 1

3 )(r + 1),

N3 = +27
16(r + 1)(r − 1

3)(r − 1), N4 = −27
16(r + 1)(r + 1

3 )(r − 1),















r1 = −1
r2 = +1
r3 = −1

3
r4 = +1

3

(2.17)

where the natural coordinate, r, varies from −1 to +1 and ri indicates the position of the node
within the natural beam boundaries.





Chapter 3

Carrera Unified Formulation in
Rotordynamics

In this chapter, the equations of motion (EoM) for rotating structures in CUF form are derived by means
of Hamilton’s Principle. Then, the fundamental nucleus expression of each term in the equations are
provided.

3.1 Hamilton’s Principle and Lagrange’s Equations

The general form of Hamilton’s Principle states that the variation of the kinetic and poten-
tial energy and the variation of the work exerted by non-conservative forces must equal zero
during any time interval. It may be expressed as

∫ t1

t0

δ (T − U) dt+

∫ t1

t0

δWnc dt = 0 (3.1)

where δ refers to kinematically admissible perturbations during the indicated time interval and

◦ T: Total Kinetic Energy of the system

◦ U: Total Potential Energy of the system, including both strain energy and potential of any
conservative external forces

◦ Wnc: Work done by non-conservative forces acting on the system, including any arbitrary
external loads

The application of this variational concept leads directly to the EoM for any given system.
If we express the energies in terms of generalised coordinates

T = T (q1, ..., qn, q̇1, ..., q̇n, t) U = U(q1, ..., qn, t) δWnc = Q1δq1 + ...+Qnδqn (3.2)

where ’Qk’ are the generalised forces, the energy variations can be presented as

δT =
n
∑

k=1

(

∂T

∂qk
δqk +

∂T

∂q̇k
δq̇k

)

δU =
n
∑

k=1

(

∂U

∂qk
δqk

)

δWnc =
n
∑

k=1

(Qkδqk) (3.3)

29
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Substituting Eqs.3.3 into Eq.3.1, we obtain

∫ t2

t1

[

n
∑

k=1

(

∂T

∂qk
δqk +

∂T

∂q̇k
δq̇k

)

−
n
∑

k=1

(

∂U

∂qk
δqk

)

+

n
∑

k=1

(Qkδqk)

]

(3.4)

Integration by parts on the time-dependent terms yields

∫ t2

t1

[

n
∑

k=1

(

∂T

∂qk
− d

dt

(

∂T

∂q̇k

)

− ∂U

∂qk
+Qk

)

δqk

]

dt = 0 (3.5)

Finally, since the variation must be arbitrary and independent, we obtain Lagrange’s equations
that directly lead to EoM.

d

dt

(

∂T

∂q̇k

)

− ∂T

∂qk
+

∂U

∂qk
= Qk (3.6)

The solutions of Eq.3.6 are the stationary points of Eq.3.1.

3.1.1 The structural stiffness matrix and the loading vecto r in CUF form

In order to derive the expressions of stiffness matrix and loading vector, we consider a struc-
ture subjected to a generic concentrate load P applied at (xp,yp,zp), while its kinetic energy is
assumed null.

P = {Px Py Pz}T (3.7)

The potential energy can be expressed as

U =
1

2

∫

V

(uTDTCDu)dV (3.8)

where u is the displacement vector of Eq.2.1, D is the matrix of linear differential operators
and C is the matrix of material coefficients. Substituting Eqs.3.7 and 3.8 in Eq.3.1 we obtain

∫ t1

t0

(
∫

V

δuT (DTCD)u dV − δuTP

)

dt = 0 (3.9)

Then, introducing the CUF (Eq2.9) and FE (Eq.2.15) approximations, Eq.3.9 becomes

∫ t1

t0

(

δqT
τiK

ijτsqsj − δqT
τiP̃

iτ
)

dt = 0 (3.10)

where Kijτs and P̃
iτ

are the structural stiffness matrix and the loading vector in terms of the
fundamental nuclei, whose expressions are reported below
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Kijτs = Iijl ✁DT
np(FτI)

[

C̃
k

npDp(FsI) + C̃
k

nnDnp(FsI)
]

+

+DT
p (FτI)

[

C̃
k

ppDp(FsI) + C̃
k

pnDnp(FsI)
]

✄+

+Iij,yl ✁

[

DT
np(FτI) +DT

p (FτI)C̃
k

pn

]

Fs ✄+IAy

+Ii,yjl IT
Ay ✁ Fτ

[

C̃
k

npDp(FsI) + C̃
k

nnDnp(FsI)
]

✄+

+Ii,yj,yl IT
AyIAy ✁ Fτ C̃

k

nnFs✄

P̃
iτ

= Ni(y
p)Fτ (x

p, zp)P

(3.11)

where

IAy =





0 0 1
1 0 0
0 1 0



 ⊳ . . . ⊲ =

∫

A

. . . dA (3.12)

(

I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)

=

∫

l

(

Ni Nj, NiNj,y
, Ni,y

Nj, Ni,y
Nj,y

)

dy (3.13)

For the sake of completeness, in Appendix B, the nine components of the fundamental nucleus
of the matrix Kijτs are written in an explicit form. We refer to (Carrera et al., 2014b) for a
detailed discussion on the computation of loading vector. It must be noted that

1. Kijτs does not depend on the expansion order.

2. Kijτs does not depend on the choice of the Fτ expansion polynomials.

These are the key-points of CUF which permits, with only nine statements, to implement any-
order of multiple class theories.
After a classical assembly procedure, which has been illustrated in Sec.2.3, and applying Eq.3.6
we obtain the following algebraic problem

K̃q = P̃ (3.14)

where k̃, P̃ and q indicate the global stiffness matrix, the loading and the unknown vectors,
respectively.

3.2 Dynamics of spinning structures

When a structure is rotating, inertial forces and moments are observed. We consider a beam
that is free to rotate about its longitudinal axis with a constant spin-speed Ω and supported by
Nb bearings. In this case, Hamilton’s Principle can be expressed as

δ

∫ t1

t0

(T − (U + Uσ0) +Wb) dt = 0 (3.15)

where the terms ’Wb’ and ’Uσ0 ’ are the contributions due to the bearings and centrifugal effect,
respectively. Following the procedure described in Sec.3.1.1, we derive the variations of the
different energetic contributions.
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3.2.1 The Kinetic Energy

Figure3.1 shows the rotating reference frame and the cross-section of the beam.

Ω

x

z

z0

x0

r z0z0

u
P

rtot

Figure 3.1 Sketch of the rotating reference frame.

The absolute velocity of the point P is the sum of relative and transfer velocities.

vabs = vrel + vtr = u̇+Ω× rtot (3.16)

Ω =





0 0 Ω
0 0 0

−Ω 0 0





where rtot = r + u is the distance of P from the neutral axis. Hence, the kinetic energy of the
whole structure is

T =
1

2

∫

V

ρ(u̇T u̇+ 2uT
Ω

T u̇+ uT
Ω

T
Ωu+ 2u̇T

Ωr + 2uT
Ω

T
Ωr + rTΩT

Ωr) dV (3.17)

3.2.2 The Centrifugal Potential Energy

The geometrical potential energy, Uσ0 , is fundamental when a highly deformable structure is
rotating.

Uσ0 =

∫

V

(σ0
T ǫnl)dV (3.18)

This term depends on non-linear term components of the strain field ǫnl and the pre-stress σ0.
The σ0 distribution is function of the structure characteristics and it is therefore, changed ac-
cording to the studied problem.
The pre-stress field for axial-symmetric structures is typically provided in terms of circum-
ferential (σδδ), radial (σrr) and axial (σyy) contributions that, written in a cartesian coordinate
system, are
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σ0xx = σδδ sin(δ)2 + σrr cos(δ)2

σ0yy = σyy

σ0zz = σδδ cos(δ)2 + σrr sin(δ)2

σ0xz (= σ0zx) = σrr sin(δ) cos(δ) − σδδ sin(δ) cos(δ)

In the case of a thin-walled cylinder, the only initial stress acts in the circumferential direction
and it is assumed equal to

σ0 = ρΩ2Rm, (3.19)

where ’ρ’ is the density and ’Rm’ is the mean radius. Conversely, for a deformable blade, the
centrifugal pre-stress acts along the radial direction and its expression is

σ0 = Ω2ρ

[

rhR+
1

2
R2 − rhr −

1

2
r2
]

(3.20)

where ’R’ is the maximum distance from the hub, whose radius is ’rh’. Regarding a thin hollow
disk, the radial ’σΩ

r ’ and circumferential ’σΩ
c ’ contributions are defined by Manson’s equations

σΩ
r = σ0

(3+ν)
8

[

1 +
D2

i

D2
e
− D2

i

D2 − D2

D2
e

]

σΩ
c = σ0

(3+ν)
8

[

1 +
D2

i

D2
e
+

D2
i

D2 − (1+3ν)
(3+ν)

D2

D2
e

] (3.21)

in which ’Di’ and ’De’ are the inner and external diameters of the disk, respectively. The term
σ0 coincides with Eq.3.19.
Regardless of the considered structure, the geometrical potential energy is defined as

Uσ0 =

∫

V

σ0xxǫ
nl
xx + σ0zzǫ

nl
zz + σ0xzǫ

nl
xz + σ0zxǫ

nl
zx dV (3.22)

Figure 3.2 The centrifugal stiffness.
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3.2.3 Stiffness and Damping due to bearings

The Nb bearings are modeled as springs and viscous dampers, therefore, the term Wb is ex-
pressed as

Wb =

Nb
∑

p=1

uTK
p
bu+ u̇TC

p
bu (3.23)

Considering the generic p-th bearing whose coordinates are (xb, yb, zb), the stiffness and damp-
ing coefficients are

K
p
b =





kpxx kpxy kpxz
kpyx kpyy kpyz
kpzx kpzy kpzz



 , C
p
b =





cpxx cpxy cpxz
cpyx cpyy cpyz
cpzx cpzy cpzz



 (3.24)

3.2.4 The Equations of Motion

Similarly to the static case of Sec.3.1.1, introducing the CUF (Eq2.9) and FE (Eq.2.15) approxi-
mations and substituting Eqs.3.8, 3.17, 3.22 and 3.23 in Eq.3.15, we obtain

∫ t1

t0

(

δqT
τiM

ijτsq̈sj + δqT
τiG

ijτs
TOT q̇sj + δqT

τiK
ijτs
TOTqsj + δqT

τiFΩ
iτr

)

dt = 0 (3.25)

where
G

ijτs
TOT = G

ijτs
Ω +G

ijτs
b

K
ijτs
TOT = Kijτs +K

ijτs
b +KΩ

ijτs +Kijτs
σ0

(3.26)

In addition to the mass matrix M ijτs and the stiffness matrix Kijτs, the rotation introduces the
following terms

◦ the Coriolis matrix Gijτs

◦ the matrix of bearing damping G
ijτs
b

◦ the matrix of bearing stiffness Kijτs
b

◦ the matrix of spin softening K
ijτs
Ω

◦ the matrix of centrifugal stiffening Kijτs
σ0

◦ the load vector F iτ
Ω

As previously done for the stiffness matrix Kijτs, the fundamental nuclei related to the above
matrices are reported below
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M ijτs = Iijl ✁ (Fτρ
kIFs)✄

G
ijτs
Ω = Iijl ✁ (Fτρ

kIFs)✄ 2Ω

G
ijτs
b =

∑Nb

p=1Ni(y
p
b )Fτ (x

p
b , z

p
b )C

p
bFs(x

p
b , z

p
b )Nj(y

p
b )

K
ijτs
b =

∑Nb

p=1Ni(y
p
b )Fτ (x

p
b , z

p
b )K

p
bFs(x

p
b , z

p
b )Nj(y

p
b )

K
ijτs
Ω = −Iijl ✁ (Fτρ

kIFs)✄Ω
T
Ω

Kijτs
σ0

= Iijl ✁ (Fτ,xσ0xxIFs,x) + (Fτ,zσ0zzIFs,z)+
+(Fτ,xσ0xzIFs,z) + (Fτ,zσ0zxIFs,x)✄

F iτ
Ω = IilΩ

T
Ω✁ FτIρr✄

(3.27)

where

I =





1 0 0
0 1 0
0 0 1



 (3.28)

⊳ . . . ⊲ =

∫

A

. . . dA (3.29)

(

I il , I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)

=

∫

l

(

Ni, Ni Nj , Ni Nj,y
, Ni,y

Nj , Ni,y
Nj,y

)

dy (3.30)

and r = {xP , 0, zP }T is the distance of a generic point P on the cross-section from the neutral
axis. In matrix form, the new fundamental nuclei are

G
ijτs
Ω = Ω





0 0 −2 Ii,jl ✁ FτρFs✄

0 0 0

2 Ii,jl ✁ FτρFs✄ 0 0





K
ijτs
Ω = Ω2









−Ii,jl ✁ FτρFs✄ 0 0
0 0 0

0 0 −Ii,jl ✁ FτρFs✄









Kijτs
σ0

= Ω2







Iijl Kσ0 0 0

0 Iijl (Kσ0) 0

0 0 Iijl Kσ0







F iτ
Ω = Ω2





Iil ✁ FτρxP ✄

0
Iil ✁ FτρzP ✄





(3.31)
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To obtain the natural frequencies and the normal modes of the rotor, we solve the homogeneous
equation:

M q̈ +GTOT q̇ +KTOT q = 0 (3.32)

Assuming a periodic function as solution

q = q̄eiωt (3.33)

Substituting Eq.3.33 and its derivative in Eq.3.32, we obtain

q̄eiωt
[

KTOT +GTOT iω −M ω2
]

= 0 (3.34)

The quadratic eigenvalues problem (QEP) of generic order R in Eq.3.34 is transformed in a
classical linear system of order 2×R:

{

M q̈ +GTOT q̇ +KTOT q = 0

−q̇ + q̇ = 0
(3.35)

Now, introducing:

a =

{

q

q̇

}

ȧ =

{

q̇

q̈

}

(3.36)

the equations of motion assume the form:

R

T
− 1

iω
I = 0 (3.37)

where:

T−1R =

[

(KTOT )
−1(GTOT ) (KTOT )

−1(M)
−I 0

]

(3.38)

The problem in Eq.3.38 is in the classical form and can be solved with the standard eigensolvers.

3.3 Dynamics of centrifugally stiffened structures

We consider, in this section, a structure that is rotating about the z-axis as shown in Fig.3.3.
In this case, the work done by supports is not taken into account, therefore, Hamilton’s princi-
ple becomes

δ

∫ t1

t0

(T − (U + Uσ0)) dt = 0 (3.39)
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x

y

rh

Figure 3.3 Sketch of a centrifugally stiffened structure.

3.3.1 The Kinetic Energy

The constant rotational speed matrix is

Ω =





0 −Ω 0
Ω 0 0
0 0 0





Hence, the kinetic energy of the whole structure becomes

T =
1

2

∫

V

ρ(u̇T u̇+ 2uT
Ω

T u̇+ uT
Ω

T
Ωu+ 2u̇T

Ωr + 2uT
Ω

T
Ωr)dV (3.40)

3.3.2 The Centrifugal Potential Energy

Although the ’σ0’ distribution is the same of Eq.3.20, the expression of the centrifugal potential
energy involves non-linear strain terms that are different from the previous case

Uσ0 =
1

2

∫

V

σ0(u
2
x,y + u2y,y + u2z,y) dV (3.41)

It should be noted that, despite the non-linear contribution ’uy,y’ is usually omitted in the liter-
ature, its role may be important due to the coupling between axial and chordwise motions.

3.3.3 The Equations of Motion

Once again introducing the CUF (Eq2.9) and FE (Eq.2.15) approximations and substituting
Eqs.3.8, 3.40 and 3.41 Eq.3.39, we obtain

∫ t1

t0

(

δqT
τiM

ijτsq̈sj + δqT
τiG

ijτs
TOT q̇sj + δqT

τiK
ijτs
TOTqsj + δqT

τiFΩ
iτr

)

dt = 0 (3.42)
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where
G

ijτs
TOT = G

ijτs
Ω

K
ijτs
TOT = Kijτs +K

ijτs
Ω +Kijτs

σ0

(3.43)

The fundamental nuclei Gijτs
Ω and K

ijτs
Ω have been already defined in Sec.3.2.4, while Kijτs

σ0
is

reported below

Kijτs
σ0

= Ii,yj,ylσ0
✁ (FτρIFs)✄Ω

T
Ω

F iτ
Ω = IilyΩ

T
Ω✁ FτIρ✄

(3.44)

where

I i
ly , I

i,y j,y
lσ0

=

∫

l

y Ni , σ0Ni,y
Nj,y

dy (3.45)

In this case, the fundamental nuclei in matrix form yield

G
ijτs
Ω = Ω





0 −2 Ii,jl ✁ FτρFs✄ 0

2 Ii,jl ✁ FτρFs✄ 0 0
0 0 0





K
ijτs
Ω = Ω2









−Ii,jl ✁ FτρFs✄ 0 0

0 −Ii,jl ✁ FτρFs✄ 0

0 0 0









Kijτs
σ0

= Ω2







Ii,yj,ylσ0
✁ (FτρIFs)✄ 0 0

0 Ii,yj,ylσ0
✁ (FτρIFs)✄ 0

0 0 Ii,yj,ylσ0
✁ (FτρIFs)✄







F iτ
Ω = Ω2





0
Iily ✁ Fτρ✄

0





(3.46)

Following the procedure explained in Sec.3.2.4, we obtain the natural frequencies and normal
modes solving Eq.3.38.
The proposed formulation allows to write EoM in a fully three-dimensional form for both spin-
ning and centrifugally stiffened structures. Performance of the 1D-CUF elements in rotordy-
namics has been evaluated in the result section.
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Aeroelastic models

In this chapter, the expressions of the external work exerted by aerodynamic loads are derived in CUF
form. The aerodynamic loads are defined according to steady and unsteady theories for subsonic and
supersonic flow regimes.

4.1 2-D steady and unsteady aerodynamic theories for fixed-w ing

Theodorsen was the first to propose a complete solution for a thin airfoil that undergoes har-
monic lateral oscillations in an incompressible fluid. Adopting the assumptions of the small-
disturbance theory, Theodorsen considered a flat plate with a control surface which could move
in vertical translation h(t) and rotate about the axis at x = ba through by angle α(t). The final
expression of the lift for a unit of span, due to both translation and rotation as derived in (Bis-
plinghoff et al., 1996), is

L = πρab
2[ḧ+ Uα̇− baα̈] + 2πρaUbC(k)

[

ḣ+ Uα+ b

(

1

2
− a

)

α̇

]

(4.1)

where ’U ’ is the free-stream velocity, ’b’ the semichord, ’ρa’ the air density and ’C(k)’ the de-
ficiency lift function, which depends on the reduced frequency k = ωU

b
. ’a’ defines the position

of the rotation axis with respect to the center of the section and it is dependent on the support
condition, the lamination scheme and the applied load. Due to the difficulty in defining its cor-
rect value for swept and asymmetric laminated structures, the elastic offset ’a’ is assumed to be
null. Theodorsen identified the term ’C(k)’ as a Hankel function of the second kind, which is, in
turn, comprised of Bessel functions of the first and second kinds (Rodden, 2012),(Bisplinghoff
et al., 1996)

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(4.2)

A simplified expression of Theodorsen’s function was proposed by R.T. Jones in 1940, who
presented an exponential approximation of Wagner’s indicial solution (1925)

C(k) ≅ 1− 0.165

1− (0.0455/k)i
− 0.335

1− (0.3/k)i
(4.3)

The first contribution in Eq.4.1, contains the virtual mass (or noncirculatory) terms that acts
as a form of inertia of the fluid surrounding the airfoil and, since the single and doubly-

39
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differentiated terms relative to the mass properties of the structure are small, they are usually
neglected. The remaining terms determine the value of the lift and represent the circulatory
part. The steady-state simplification can be easily obtained by replacing the function C(k) with
the unitary value and omitting the term containing α̇.

L ≅ 2πρaUb[ḣ+ Uα] (4.4)

For the special purpose of correcting the sectional lift coefficient ’CL’ to account for the influ-
ence of the aspect ratio (’AR=2Lw

cm
’) and the sweep angle (’Λ’), Diederich’s approximation is

used

clα =
dCL

dα
=

π AR

π AR + clα0 cos(Λ)
clα0 cos(Λ) (4.5)

where ’Lw’ is the length of the wing, ’c’ is the mean chord (see Fig.5.38) and ’clα0’ is the lift-
curve slope, which is equal to 2π. Finally, since the quantity ’bπ’ may be approximated with

the integral
∫ b

−b

√

b−x
b+x

dx, which is able to reproduce the distribution of pressure over a slightly

inclined, thin and uncambered airfoil, Eqs.4.1 and 4.4 become, respectively,

L =
2π AR cos(Λ)

π AR + 2π cos(Λ)

∫ b

−b

√

b− x

b+ x
dx ρaUC(k)

[

ḣ+ Uα+ b

(

1

2
− a

)

α̇

]

(4.6)

L ≅
2π AR cos(Λ)

π AR + 2π cos(Λ)

∫ b

−b

√

b− x

b+ x
dx ρaU [ḣ+ Uα] (4.7)

4.1.1 External work for the fixed-wing configuration

The equations of motion of a generic structure oscillating in an incompressible flow can be
derived directly using Hamilton’s Principle (Eq.3.1). The external work generated by lift can
be written as

δLext =

∫

y

∫

x

δuz(x, y, ztop)L(x, y, ztop) dxdy (4.8)

where ’ztop’ is the upper z-coordinate of the cross-section that, according to Eq.4.1, becomes

δLext = cost

[

∫

y

∫

x

δuT

√

b− x

b+ x
IL u̇ + δuT

√

b− x

b+ x
IL u,x + δuT b

(

1

2
− a

)

√

b− x

b+ x
IL u̇,x

]

dx dy

(4.9)
where

ḣ = u̇z α =
duz
dx

= uz,x α̇ = u̇z,x

and

IL =





0 0 0
0 0 0
0 0 1



 cost =
2π AR cos(Λ)

π AR + 2π cos(Λ)
ρa U C(k)

By introducing Eqs.2.9 and 2.15 into Eq.4.9, we obtain
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δLext = δqT
τiD

ijτs
L q̇sj + δqT

τi K
ijτs
L qsj + δqT

τiD
ijτs
Lm q̇sj (4.10)

where D
ijτs
L , Kijτs

L , Dijτs
Lm and F iτ

L are the aerodynamic contributions. The first and the third
matrices introduce damping into the system, whereas the third matrix represents the aero-
dynamic stiffness. The last term is a forcing vector that can be overlooked in free-vibration
analyses. The aforementioned matrices, written in terms of fundamental nuclei

D
ijτs
L = cost Iijl ✁

(√

b−x
b+x

Fτ (x, ztop)ILFs(x, ztop)
)

✄x

K
ijτs
L = cost Iijl ✁

(
√

b−x
b+x

Fτ,x(x, ztop)ILFs(x, ztop)
)

✄x

D
ijτs
Lm = cost Iijl b

(

1
2 − a

)

✁

(√

b−x
b+x

Fτ,x(x, ztop)ILFs(x, ztop)
)

✄x

⊳ . . . ⊲ x =

∫ b

−b

. . . dx

(4.11)
Similarly to rotordynamics equations, the quadratic eigenvalue problem (QEP) of generic order
R is transformed into a classical linear system of 2×R order:

{

Mq̈ + (DL +DLm)q̇ + (K +KL) q = 0

−q̇ + q̇ = 0
(4.12)

introducing

a =

{

q

q̇

}

ȧ =

{

q̇

q̈

}

(4.13)

the equations of motion assume the form of Eq.3.37 where

T−1R =

[

(K +KL)
−1(DL +DLm) (K +KL)

−1M

−I 0

]

(4.14)

Since the aerodynamic matrices depend on the reduced frequency ’k’, the solutions are found
by means of an iterative procedure (Nguyen, 2009). The frequencies are introduced by trial
and error for any speed in the considered range, until Eq.3.37 is obtained. The flutter velocity
is determined when the real part of one eigenvalue is null.

4.2 2-D unsteady aerodynamic theory for rotating lifting su rfaces

According to Bielawa (1992), the general expression for the lift distribution on a rotary-wing
yields

dL

dy
= πρab

2Ω2

[

ḧ

Ω2
+

α̇

Ω
− ba

α̈

Ω

]

+ 2πρabΩ
2C(k)

[

ḣ

Ω
+ yα+ b

(

1

2
− a

)

α̇

Ω

]

(4.15)

where, in this case, the reduced frequency ’k’ is

k =
b

3R

ω

Ω
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In their study, the authors stated that this approach is limited as it relies on Theodorsen prob-
lem. However, it can be easily generalized as the unsteadiness is essentially described by the
lift deficiency function. Hence, choosing different expressions of ’C(k)’, it is possible to define
several motion conditions. Since the rotating structure aerodynamic is more complex than its
fixed-wing counterpart, it is useful to consider the physics of the flowfield near the rotor. The
rotor vertical speed (’Vz’) and its thrust (∝ CT ) generate an inflow velocity through the disk
that can be expressed as

u = ΩR

[

Vz

2
+

√

V 2
z

4

CT

2

]

In the general case, the rotor blade develops oscillating loads, which generate a radial distribu-
tion of vorticity blown downward at velocity ’u’. The wake can be described via models with
increasing levels of complexity but, historically, the first successful attempt to incorporate the
"returning wake" into the unsteady aerodynamics problem was proposed by Loewy (Loewy,
1957). The aerodynamic actions on a reference blade strongly depend on the shed vorticity of
the previous revolutions as shown in Fig.4.1.

u inflow velocity (2 u)/(Q )π Ω

returning wake - vorticity sheets

Ωr

x

Figure 4.1 Schematic of the Loewy problem (Bielawa, 1992).

According to Loewy’s theory, the returning wake is modelled as an infinite number of layers,
which are equally spaced by a fixed distance, ′h′l semi-chords. Here, the factor ′h′l quantify the
contribution of the underlying vortices to the lift distribution on the reference blade. The main
difference with respect to Theodorsen’s model lies in the form of the lift-deficiency function,
which is (Dowell et al., 2004):

C ′(k,m, hl) =
H

(2)
1 (k) + 2J1(k)W (km, hl)

H
(2)
1 (k) + iH

(2)
0 (k) + 2[J1(k) + iJ0(k)]W (km, hl)

(4.16)

where ’Jn(k)’ and ’H2
n(k)’ are the first-kind Bessel and second-kind Hankel functions of order

n, respectively. The wake weighting function ’W(k,m,hl)’ for a rotor with ’Q’ blades is defined
as

W (k,m, h) =
1 +

∑Q−1
q=1 (e

khlQ ei2πm)Q−qeiΦq

ekhQ ei2πm − 1
(4.17)

where ’m’ and ’Φq’ are the ratio of oscillatory frequency to rotational frequency (=ω/Ω) and the
phase angle between the qth blade and the reference blade. Due to periodicity, Eq.4.17 can be
expressed following the formulation for a single-blade rotor with the modified values ′m̂′ and
′ĥ′:
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W (km̂, ĥ) =
1

ekĥQ ei2π m̂ − 1
m̂ =

ω

QΩ
ĥ =

2πλ0

Q (b/r)
(4.18)

where ′λ′
0 is the inflow ratio (≃

√

CT /2)and ′r′ is a generic radial distance. Influence of the
frequency ratio and the spacing factor on the Loewy’s deficiency function is shown in Fig.4.2.
As expected, Loewy’s function ’C(k)’ coincide with Theodorsen’s expression for high values
of spacing factor ’ĥ’.
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Figure 4.2 Real and Imaginary parts of the Loewy function vs ’k’ as functions of inflow parameter ĥ (a,b) and
frequency ratio m̂ (c,d).

4.2.1 External work for the rotary-wing configuration

The external work defined in Eq.4.9 for a rotating blade is

δLext = cost

[

∫

y

∫

x
δuT Ω y

√

b− x

b+ x
IL u̇ + δuT Ω2 y2

√

b− x

b+ x
IL u,x dx dy

]

+

cost

[

∫

y

∫

x
δuT Ω y

√

b− x

b+ x
IL b

(

1

2
− a

)

u̇,x dx dy

] (4.19)
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where

IL =





0 0 0
0 0 0
0 0 1



 cost =
2π AR cos(Λ)

π AR + 2π cos(Λ)
ρaC(k)

Introducing, again, the CUF and FEM approximations, we obtain Eq.4.10. The fundamental
nuclei of the damping and stiffness aerodynamic matrices are

D
ijτs
L = costΩ Iijly ✁

(√

b−x
b+x

Fτ (x, ztop)ILFs(x, ztop)
)

✄x

K
ijτs
L = costΩ2 Iijl

y2
✁

(√

b−x
b+x

Fτ,x(x, ztop)ILFs(x, ztop)
)

✄x

D
ijτs
Lm = costΩ Iijly b

(

1
2 − a

)

✁

(
√

b−x
b+x

Fτ,x(x, ztop)ILFs(x, ztop)
)

✄x

⊳ . . . ⊲ x =

∫ b

−b

. . . dx

(4.20)
Velocity varies linearly along the span, therefore yielding the integrals along the y-direction

(

I ij
ly
, I ij

l2y

)

=

∫

l

(

y NiNj , y
2 NiNj

)

dy

A solution is obtained following the procedure presented in Sec.4.2.1.

4.3 Panel Flutter of rotating plates: Piston Theory

In this section, the first-order piston theory is applied to rotating structures. Despite its simplic-
ity, the piston theory provides accurate results in the supersonic range, with a Mach number
’M’ (= ’flow speed’ / ’speed of sound (Vs)’) greater than

√
2. The flow on the panel is mod-

elled as a one-dimensional flow in a channel (in a piston) and, no solutions for shock waves
downstream of the plate are provided. According to (Carrera and Zappino, 2014a), the local
differential pressure ’P’ produced by the fluid over the rotating plate surface is

P (x, y, ztop) =

(

ρaU
2

β

)

α+
ρaU

β

(

M2 − 2

M2 − 1

)

ḣ (4.21)

where

α =
duz
dx

ḣ = u̇z

M =
U

Vs
U = Ω ȳ β =

√

M2 − 1

4.3.1 External work for a rotating structure

As previously done, the work due to the external loading is written as

δLext =

∫

y

∫

x

δuz(x, y, zsurf )P (x, y, zsurf ) dxdy (4.22)



AEROELASTIC MODELS 45

U

Ω

x

y

rh

r

͂
Ωr

Figure 4.3 Geometry of the rotating plate.

where ’zsurf ’ is the z-coordinate of the flow-wetted surface. Substituting Eq.4.21 and introduc-
ing both CUF and FE approximations, Eq.4.22 becomes

δLext =

∫

y

∫

x

δuT

(

ρaU
2

β

)

IL u,x + uT

(

ρa U

β

)(

M2 − 2

M2 − 1

)

IL u̇ dx dy (4.23)

From Eq. 4.23, introducing Eq.s 2.9 and 2.15, we obtain

δLext = δqT
τi K

ijτs
L q̇sj + δqT

τi D
ijτs
L q̇sj (4.24)

where K
ijτs
L and D

ijτs
L are the aerodynamic damping and stiffness contributions, respectively.

Writing these matrices in terms of fundamental nuclei

K
ijτs
L = Iijl ✁

((

ρa U2

β

)

Fτ,x(x, zsurf )ILFs(x, ztop)
)

✄x

L
ijτs
L = Iijl ✁

((

ρa U
β

)(

M2−2
M2−1

)

Fτ (x, zsurf )ILFs(x, ztop)
)

✄x

⊳ . . . ⊲ x =

∫ b

−b

. . . dx

(4.25)
Finally, we obtain

T−1R =

[

(K +KL +KΩ +Kσ0)
−1(DL +GΩ) (K +KL +KΩ +Kσ0)

−1M

−I 0

]

(4.26)





Chapter 5

Numerical Results and discussion

This chapter aims to present a number of numerical results obtained with the 1D-CUF finite elements.
Firstly, static and free-vibration analyses are carried out on structures made of orthotropic and FG
materials. Several geometries are studied including compact and thin-walled cross-sections with open
and closed profile. Secondly, the results derived by the dynamic analyses of rotating structures are shown
highlighting the differences between the classical and refined theories. Finally, the flutter phenomenon
for fixed and rotating systems is evaluated for subsonic and supersonic flows.

Nomenclature used to denote various expansions

Using the ESL approach, several expansions are evaluated and listed in Table 5.1. In the fol-
lowing, abbreviations stand for

◦ functions with single trigonometric factor:

sx = sin
(

m
πx

a

)

cx = cos
(

m
πx

a

)

sz = sin
(

n
πz

b

)

cz = cos
(

n
πz

b

)

sd = sin
(

m
πxz

ab

)

cd = cos
(

m
πxz

ab

)

◦ functions with two trigonometric factors:

cc = cos
(

m
πx

a

)

cos
(

n
πz

b

)

cs = cos
(

m
πx

a

)

sin
(

n
πz

b

)

sc = sin
(

m
πx

a

)

cos
(

n
πz

b

)

ss = sin
(

m
πx

a

)

sin
(

n
πz

b

)

◦ hyperbolic functions:

chx = cosh (mx) shx = sinh (mx) chz = cosh (nz) shz = sinh (nz)

◦ exponential functions:

expx = e(mx) expz = e(nz)

47
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◦ polynomial functions:
xz = xmzn z = zn

The indexes m and n indicate summation, and they represent different parameters according
to the adopted functions. For trigonometric functions, m and n are the half-wave numbers

sx = sin
(

m
πx

a

)

=
N
∑

m=1

sin
(

m
πx

a

)

= sin
(πx

a

)

+ sin
(

2
πx

a

)

+ . . .+ sin
(

N
πx

a

)

cc = cos
(

m
πx

a

)

cos
(

n
πz

b

)

=

N
∑

m=0

N
∑

n=0

cos
(

m
πx

a

)

cos
(

n
πz

b

)

For exponential and polynomial functions, n and m represent exponents:

expx = emx =

N
∑

m=1

emx = 1 + ex + e2x + . . .+ eNx

xz =

N
∑

n=1

n−1
∑

m=1

xn−mzm = xz + x2z + xz2 + x3z + x2z2 + xz3 + . . .+ xN−1z + . . .+ xzN−1

On the bases of these explicit formulations, the expansions introduced in Tab.5.1 can be written
in the extended form

E1-N:

u(x, y, z, t) = u1(y, t) + sin
(

m
πx

a

)

u(2m)(y, t) + sin
(

m
πz

b

)

u(2m+1)(y, t)

E2-N:

u(x, y, z, t) = u1(y, t) +sin
(

mπx
a

)

u(4m−2)(y, t) +sin
(

mπz
b

)

u(4m−1)(y, t)+

+cos
(

mπx
a

)

u(4m)(y, t) +cos
(

mπz
b

)

u(4m+1)(y, t)

E3-N:

u(x, y, z, t) = u1(y, t) +sin
(

mπx
a

)

u(6m−4)(y, t) +sin
(

mπz
b

)

u(6m−3)(y, t)+

+cos
(

mπx
a

)

u(6m−2)(y, t) +cos
(

mπz
b

)

u(6m−1)(y, t)+

+sin
(

mπxz
ab

)

u(6m)(y, t) +cos
(

mπxz
ab

)

u(6m+1)(y, t)

E4-N:

u(x, y, z, t) = u1(y, t) + e(mx)u(2m)(y, t) + e(mz)u(2m+1)(y, t)

E5-N:

u(x, y, z, t) = u1(y, t) +e(mx)u(4m)(y, t) +e(mz)u(4m+1)(y, t)+

+sin
(

mπx
a

)

u(4m−2)(y, t) +sin
(

mπz
b

)

u(4m−1)(y, t)

E6-N:
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u(x, y, z, t) = u1(y, t) +sinh (mx)u(4m−2)(y, t) +sinh (mz)u(4m−1)(y, t)+

+cosh (mx)u(4m)(y, t) +cosh (mz)u(4m+1)(y, t)

E7-N:

u(x, y, z, t) = u1(y, t) +sinh (mx)u(6m−4)(y, t) +sinh (mz)u(6m−3)(y, t)+

+cosh (mx)u(6m−2)(y, t) +cosh (mz)u(6m−1)(y, t)+

+sin
(

mπx
a

)

u(6m)(y, t) +sin
(

mπz
b

)

u(6m+1)(y, t)

For the expansion E8 is shown explicitly
E8-3:

u(x, y, z, t) = u1(y, t) +sin
(

1πx
a

)

u2(y, t) +sin
(

1πz
b

)

u3(y, t)+
+sin

(

2πx
a

)

u4(y, t) +sin
(

2πz
b

)

u5(y, t) +x z u6(y, t)+
+sin

(

3πx
a

)

u7(y, t) +sin
(

3πz
a

)

u8(y, t) +x2 z u9(y, t)+
+x z2 u10(y, t)

E9-N:

u(x, y, z, t) = cos
(

mπx
a

)

cos
(

nπz
b

)

um,n(y, t) +cos
(

mπx
a

)

sin
(

nπz
b

)

um,n(y, t)
+sin

(

mπx
a

)

cos
(

nπz
b

)

um,n(y, t) +sin
(

mπx
a

)

sin
(

nπz
b

)

um,n(y, t)

E10-N:

u(x, y, z, t) = u1(y, t) +znun+1(y, t)

If Taylor-like expansions are added to displacement fields, their order is specified by the sub-
script. For instance, the first component of E22 displacement field becomes

ux = cost ux1 + sin
(πx

a

)

ux2 + cos
(πx

a

)

ux3 + sin
(πz

b

)

ux4 + cos
(πz

b

)

ux5+

+sin
(

2
πx

a

)

ux6 + cos
(

2
πx

a

)

ux7 + sin
(

2
πz

b

)

ux8 + cos
(

2
πz

b

)

ux9+

+x ux10 + z ux11 + x2 ux12 + xz ux13 + z2 ux14

5.1 Static Analyses

Convergency Analysis

A cantilever beam with aspect-ratio equal to 100 is here considered. The material is aluminum
with Young Modulus and Poisson ratio equal to 73 GPa and 0.34, respectively. The cross-
section is square and a concentrated load (Fz=-25 N ) is applied at the free tip. The reference
solution is provided by the following formula

uz(y = L) =
FzL

3

3EI
(5.1)

A convergence study is performed to investigate the effect of the number of the mesh elements
and the order of the expansion on the transverse displacement evaluated at the loading point
(see Tab.5.2). In this case, the convergence is achieved for ne equal to 10.



50 CHAPTER 5

Table 5.1 Expansions used in the analyses.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

cost X X X X X X X X X X

sx X X X X X X

cx X X

sz X X X X X X

cz X X

sd X

cd X

expx X X

expz X X

shx X X

chx X X

shz X X

chz X X

cc X

cs X

sc X

ss X

xz X

z X

Table 5.2 Effect of the number (ne) of elements B4 on −uz (×10−3 [m]). Loading case: bending.

N ne = 1 ne = 5 ne = 10 ne = 30

CBT 1.3703 1.3703 1.3703 1.3703
FOBT 1.3704 1.3704 1.3704 1.3704
TE1 1.3704 1.3704 1.3704 1.3704
TE3 1.2728 1.3442 1.3534 1.3597
TE5 1.2840 1.3541 1.3627 1.3684

Ref.eq.(5.1)=1.3698

CBT stands for Classical beam theory.

FOBT stands for First-order beam theory.
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5.1.1 Laminated compact beams

This section shows the results obtained for cantilevered symmetric (00/900/00) and antisym-
metric (00/900) cross-ply laminated beams constituted by orthotropic material. All laminae
have the same thickness and, if not otherwise specified, the dimensionless material properties
adopted are:

EA/ET = 25 GAT /GTT = 2.5 νAT = 0.1 νTT = 0.3

where A refers to the fiber direction and T refers to the normal direction.
For sake of convenience, the results are presented in non-dimensional form:

ūz = 100
bh3ET

q0L4
uz, σ̄ij =

σij
q0

, with i, j = x, y, z

where L is the length of the beam, b and h the dimensions of the rectangular cross-section and
q0 the intensity of the distributed load. The structures are modelled with ten finite elements.
The displacement of the tip, the stresses σ̄yy and σ̄zz are compared with those obtained by us-
ing the solid elements HEX20 of MSC NASTRAN c© (Tab.5.3 and 5.4). For both structures, it
is worth noting that expansion E4, where exponential functions are used, leads to results that
strongly agree with the reference solutions. With a comparable number of degrees of freedom,
the expansion E1 provides good results both in term of displacement and longitudinal stress
σ̄yy whereas, for stress σ̄zz, the solution appears inadequate. Furthermore, in the last column
of Tab.5.3, the ratio between the CPU time using the expansion and Euler-Bernoulli theory is
shown. These values give information about the real computational effort required by refined
theories. Although the ratios can reach high values (200-300), the computation time with a
common laptop is around few seconds.
The importance of the zig-zag function is evident in Figs.5.1 and 5.2 where distributions through-
the-thickness of the non-dimensional stresses (σ̄yy , σ̄zz and σ̄yz) are shown for several kinds of
expansions. Figures labeled with (a−c−e) refer to expansions without the zig-zag term whereas
figures (b− d− f ) show the distributions when this term is included. Results demonstrate that
the combination of different functions by introducing the discontinuity of the first derivative
of displacements allows to obtain quasi-3D solutions with very low computational efforts.
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Table 5.3 Non-dimensional displacements and stresses of a symmetric cross-ply beam under an uniform dis-
tributed load. σyy at (b/2;0;-0.367h) and σzz at (b/2;L/2;h/2). L/h = 4

N -ūz -σ̄−
yy -σ̄+

zz DOFs t/tCBT

Nastran 17.9754 30.5844 1.0278 103920

EBBT 6.2245 36.5184 0.0000 279 1
FSDT 14.0223 36.5184 0.0000 279 1

TE1
14.0224 36.5184 0.4958 279 4

zz 17.3328 38.0646 0.4475 372 6

TE2
14.0154 36.3298 0.9368 558 13

zz 17.3060 37.8849 1.0556 651 16

TE3
16.7647 28.3861 1.0439 930 33

zz 17.7591 31.1710 1.0203 1023 40

TE6
17.1384 25.2949 0.9950 2604 271

zz 17.8371 27.3629 1.0323 2697 273

E1
5 17.5913 31.1008 0.4238 1023 55
5zz 17.9017 30.0005 0.4251 1116 63

E2
5 17.5352 30.9342 0.9435 1953 148
5zz 17.8420 29.8032 0.9352 2046 161

E4
7 17.3130 26.6598 0.9450 1395 76
7zz 17.8397 26.2546 0.9135 1488 86

E6
4 17.4534 32.3089 0.9145 1581 100
4zz 17.8407 29.2543 0.9013 1674 122
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Table 5.4 Non-dimensional displacements and stresses of an antisymmetric cross-ply beam under an uniform
distributed load. σyy at (b/2;0;-0.328h) and σzz at (b/2;L/2;h/2). L/h = 4

N ūz σ̄−
yy -σ̄+

yy -σ̄+
zz DOFs

Nastran 43.0937 36.1128 11.4270 1.0239 198300

EBBT 31.9645 50.0290 11.4394 0.0000 279
FSDT 40.8757 50.0290 11.4394 0.0000 279

TE1
40.8609 50.0290 11.4394 0.3887 279

zz 41.2077 48.2077 13.0898 0.6001 372

TE2
40.9202 50.3749 13.2647 0.9811 558

zz 41.0123 48.3814 13.6445 0.9270 651

TE3
41.6311 36.7505 12.8075 1.1380 930

zz 41.6610 39.2040 11.2977 1.0460 1023

TE6
42.1657 33.9530 10.8486 0.9599 2604

zz 42.2660 32.0183 10.7739 0.9232 2697

E1
5 41.0128 38.9804 12.0684 0.1919 1023
5zz 41.9098 37.8884 13.2106 0.4934 1116

E2
5 42.2677 38.8214 11.9479 0.9503 1953
5zz 42.3232 39.9750 11.8412 0.9267 2046

E4
7 42.2131 33.2601 11.7440 0.9671 1395
7zz 42.2895 31.5211 11.8038 0.9559 1488

E6
4 42.2211 36.4385 11.4997 0.8818 1581
4zz 42.3144 41.9019 11.1968 0.9304 1674
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Figure 5.1 Distribution of stresses σ̄ through-the-thickness of a symmetric cantilever beam (L/h=4).
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Figure 5.2 Distribution of stresses σ̄ through-the-thickness of an anti-symmetric cantilever beam (L/h=4).
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5.1.2 Functionally Graded Structures

The rectangular cross-section FG beam

First of all, a rectangular cross-section beam is considered to assess the theory. The aspect ratio
of the cross-section (a/h) is assumed to be equal to 0.01 in order to neglect the effects in the
width-wise direction. The structure is subjected to a sinusoidal pressure that can act either on
the top (zT ) or bottom (zB) surface, whose distribution is

p(x, y) = pzz sin
(π

L
y
)

pzz = 1 (5.2)

where ’L’ is the length of the beam. The Young’s modulus E(x,z) varies with the exponential
law in Eq.5.3 so that the ratio E(x,zT )/E(x,zB)=10 with E(x,zB) = 1000.

E(x, z) = E(x, zB) e
α1 x+β1 eα2 z+β2 (5.3)

Two length-to-thickness ratios (L/h) are considered and the results are compared with those
available in Giunta et al. (2010). In their analysis, Giunta et al. provided closed form solutions
using CUF, and higher-order displacement theories were obtained adopting Taylor-type expan-
sions: the relative results were validated by solutions available in the literature. The transverse
displacement and stresses are reported in the following non-dimensional forms

ūz =
uz
h

σ̄ij =
σij
pzz

The structure is simply supported and it is modelled using ten 4-node beam (B4) elements.
Tables 5.5 and 5.6 show the results for L/h equal to 10 and 2.5, respectively.

Table 5.5 Transverse displacement and stresses for L/h = 10, ν=0.25 and loading acting at zT

Theory 10ūz(L/2,zB) σ̄yy(L/2,-h/2) σ̄yz(0,0) DOF

EBBT Ref.(Giunta et al., 2010) -4.0311 26.928 -
FSDT Ref.(Giunta et al., 2010) -4.0959 26.928 -2.5753
TE3 Ref.(Giunta et al., 2010) -4.0938 26.942 -4.3468
TE7 Ref.(Giunta et al., 2010) -4.0942 26.922 -4.4527

EBBT -4.0308 26.926 - 279
FSDT -4.0955 26.926 -2.5816 279
TE3 -4.0934 26.940 -4.3530 930
TE7 -4.0938 26.920 -4.4588 3348

E2-52 -4.0938 26.922 -4.4587 2418
E10-42 -4.0938 26.923 -4.4583 930
E10-92 -4.0938 26.922 -4.4587 1395

EBBT : Euler-Bernoulli Beam Theory.

FSDT : First-order Shear Deformation Theory.

-: results not provided by the model.

As far as classical and TE beam models are concerned, the finite element solutions agree with
the analytical approach for both cases. Moreover, Fig. 5.3 shows the stress distributions through
the thickness of the shortest beam for different displacement models.
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Table 5.6 Transverse displacement and stresses for L/h = 2.5, ν=0.3 and loading acting at zB

Theory σ̄yy(L/2,-h/2) σ̄yy(L/2,h/2) σ̄yzmax
DOF

EBBT Ref.(Giunta et al., 2010) -1.6830 8.0363 -
FSDT Ref.(Giunta et al., 2010) -1.6830 8.0360 2.0359
TE3 Ref.(Giunta et al., 2010) -1.8354 8.5441 1.3554
TE8 Ref.(Giunta et al., 2010) -1.8175 8.4440 1.2822

EBBT -1.6830 8.0363 - 279
FSDT -1.6830 8.0363 2.0362 279
TE3 -1.8355 8.5445 1.3548 930
TE8 -1.8175 8.4420 1.2807 4185

E2-52 -1.8615 8.3784 1.2750 2418
E10-42 -1.8620 8.3809 1.2753 930
E10-92 -1.8629 8.3827 1.2750 1395

EBBT : Euler-Bernoulli Beam Theory.

FSDT : First-order Shear Deformation Theory.

-: results not provided by the model.

It should be noted that the E10-42 expansion leads to accurate results with a very low number
of degrees of freedom (DOF 1). This is due to the fact that the beam can be considered in a state
of plane stress (in yz-plane), which allows to disregard the x-terms in the TE expansions since
the transverse stresses are dominant over those along the width.

The multi-layer FG beam

A cantilevered three-layer beam is here considered. The length ’L’, the width ’a’ and the whole
thickness ’h’ of the structure are 2.5, 0.5 and 1 m, respectively. The layers are made of function-
ally graded materials, whose Young’s moduli ’E(x,z)’ follow three different gradation functions
(linear, exponential and sigmoid):

-0.5 < z < -0.3 : E(z) = 400× 109z + 270× 109 ;

-0.3 < z < 0.0 : E(z) = 150× 109 e
z

0.3(ln(
250
150))+

250
150 ;

0.0 < z < 0.25 : E(z) = 250×109V (z) + 380× 109(1− V (z)) where V (z) = 1− 1
2

(

1− 2(z−0.25)
0.5

)3

0.25 < z < 0.5 : E(z) = 250×109V (z) + 380 × 109(1− V (z)) where V (z) = 1
2

(

1 + 2(z−0.25)
0.5

)3

The Poisson’s ratio is considered constant and equal to 0.25 for all layers and the structure
undergoes to a distributed pressure equal to 1 MPa. The beam is modelled with ten 4-node fi-
nite elements along the y-axis. For comparison purposes, a finite element solution is provided,
where solid elements HEX 8 are used. The mechanical properties are defined in the centroid
of each element and, in order to correctly describe the materials distribution, 25, 10 and 50

1 DOF = 3×Nnodes × T , in which ’Nnodes’ is the number of structural nodes and ’T’ the number of terms in the
expansion.
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elements are used along the length, the width and the thickness, respectively. The total num-
ber of degrees of freedom of the 3D model is therefore equal to 42075. Figures 5.4 show the
transverse and axial displacements obtained with a number of beam theories in which poly-
nomial, trigonometric as well as exponential functions are used. Because of shear effects, the
transverse displacement has a non-linear variation along the thickness, and the beam results
are slightly lower than the solid solution. Moreover, it is noteworthy that the FSDT predicts
a constant value of uz. The axial displacements in Fig. 5.4-b perfectly match the reference
solution. Regarding the stress distributions, Fig.5.5 shows that the considered refined displace-
ment theories lead to quite accurate results. However, slightly different stress distributions are
presented in Fig.5.6.

S
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Figure 5.3 Stress distributions through the thickness. FGM beam aspect-ratio 2.5.
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(b) Axial displacement

Figure 5.4 Displacements along the thickness of the three-layered FG beam at y=L .
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Figure 5.5 Stresses along the thickness of the three-layered FG beam.
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Figure 5.6 Zoom of the shear stress σyz distribution along the thickness of the three-layered FG beam.
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5.2 Free-Vibration Analyses

5.2.1 Laminated compact beams

In the first two examples, symmetric (00/900/00) and antisymmetric (00/900) cross-ply lami-
nated beams are studied. The effect of the beam dimensions and lamination on the natural
frequencies and modes as well as on the accuracy of the proposed theories is investigated. The
simply supported beams are constituted by orthotropic material, whose properties are:

EL/ET = 25 GLT /GTT = 2.5 νLT = νTT = 0.25

where L refers to the fiber direction and T refers to the normal direction. All laminae are
assumed to be of the same thickness. For convenience, the natural angular frequencies 2 are
presented in dimensionless form:

ω̄ =
L2

b

√

ρ

ET
ω

where L is the length of the beam and b the width of cross-section. The results are compared
with those found in (Giunta et al., 2013) where the authors provided closed form solutions
using CUF. The higher-order displacement theories were obtained adopting Taylor-type ex-
pansions and the relative results were assessed with three-dimensional FEM solutions. In
Tabs.5.7 and 5.8, the dimensionless frequencies of the symmetric beams are shown, for length-
to-thickness ratios equal to 10 and 5, respectively. The first two modal shapes are pure flex-
ural modes, which occur in different planes. When the beam becomes thicker, these modes
interchange their order of appearance and, only with higher order displacement models, the
"modal swapping" becomes detectable. For both cases, the use of zig-zag function substantially
improves the accuracy of results for the flexural modal shape in yz-plane, while, for the remain-
ing mode of deformation, the most efficient models are the Taylor-type expansions and E8. By
contrast, the third mode involves a torsional deformation, whose natural frequency is com-
puted with acceptable accuracy adopting the theories with the xz term (in other words, Taylor-
type expansions and E8). The last two modes involves shear deformations which are typically
detected by using 3D elements. For the sake of clarity, Fig.5.7 shows these modal shapes com-
puted with the expansion TE6. The axial/shear deformation appears as fourth and fifth mode,
respectively. By comparing the results it is shown that the frequency values obtained with TE8
and E2 are close to the reference solutions for both values of length-to thickness ratios. Regard-
ing the last shear modes, the zig-zag function once again enables a significant improvement
of the solutions, indeed, if we consider TE3 expansion for L/h equal to 10, the relative error
decreases from 6% to 0.2%. An antisymmetric laminated beam with length-to-thickness ratio
equal to 5 is considered. The dimensionless angular frequencies are shown in Tab.5.9. For this
case, the five modal shapes are: flexural on yz-plane, flexural/torsional on xy-plane, torsional,
axial/shear and shear on xy-plane, respectively. For sake of clarity, the latter two deformation
modes are shown in Fig.5.7-c and 5.7-d. Classical models are intrinsically unable to detect the
torsional mode and the shear mode, hence, variable kinematic models are needed. As in the
previous examples, the accuracy of the computation of frequencies is affected by the choice of
the functions as well as by the kind of modal shapes. For instance, TE6 and E8 yield precise
results for torsional and coupled modes (modes II and III), E2, E3 and E6 seem suitable for

2 The angular frequency is ω = 2πf (rad/sec) whereas f is the frequency (Hz).



62 CHAPTER 5

detecting the axial/shear mode (IV), whereas the zig-zag function is more effective for shear
modes (modes IV and V).

Table 5.7 Dimensionless natural frequencies, L/b=10, [0/90/0] beam.

Mode I Mode II Mode III Mode IV Mode V DOFs

TE23 (Giunta et al., 2013) 10.038 10.371 17.719 126.70 219.02 900

EBBT 11.697 13.929 - 129.52 - 198
FSDT 10.358 11.418 - 129.58 268.47 198
TE2 10.367 11.420 20.968 128.46 268.50 396

TE2zz 10.367 10.450 20.968 128.75 221.10 462
TE3 10.113 10.637 20.968 128.78 233.05 660

TE3zz 10.113 10.337 20.968 128.74 218.85 726
TE6 10.069 10.501 18.005 127.24 224.88 1848

TE6zz 10.069 10.333 18.005 127.22 218.67 1914
E1-5 10.176 10.426 21.075 129.61 220.32 726

E1-5zz 10.176 10.351 21.075 129.61 218.91 792
E2-4 10.174 10.416 21.088 127.86 220.24 1122

E2-4zz 10.174 10.342 21.088 126.91 218.66 1188
E3-3 10.173 10.416 21.032 128.18 220.23 1254

E3-3zz 10.173 10.340 21.031 127.20 218.66 1320
E5-2 10.188 10.491 21.475 128.07 258.00 594

E5-2zz 10.188 10.350 21.471 128.61 218.95 660
E6-2 10.173 10.656 21.075 127.99 233.73 594

E6-2zz 10.173 10.342 21.075 125.78 218.94 660
E7-2 10.173 10.428 21.075 126.18 258.00 858
E8-5 10.073 10.417 18.242 129.60 220.10 1386

E8-5zz 10.073 10.342 18.241 129.22 218.68 1452
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Table 5.8 Dimensionless natural frequencies, L/b=5, [0/90/0] beam.

Mode I Mode II Mode III Mode IV Mode V

TE23 (Giunta et al., 2013) 6.9252 7.5017 9.0683 55.914 58.135

EBBT 13.752 11.552 - - 64.722
FSDT 8.0853 8.0409 - - 64.752
TE2 8.0837 8.0451 10.502 67.238 62.857

TE2zz 7.0131 8.0451 10.502 66.319 62.893
TE3 7.1597 7.6230 10.502 59.912 62.824

TE3zz 6.8990 7.6230 10.502 56.467 62.540
TE8 6.9800 7.5279 9.1129 56.694 58.670

TE8zz 6.8886 7.5279 9.1129 55.729 58.886
E1-5 6.9675 7.6956 10.536 58.245 64.591

E1-5zz 6.8943 7.6956 10.535 57.322 64.552
E2-4 6.9653 7.6952 10.537 58.389 59.600

E2-4zz 6.8913 7.6952 10.537 57.323 58.670
E5-2 7.0480 7.7013 10.586 58.608 62.850

E5-2zz 6.8969 7.7013 10.585 57.361 62.621
E6-2 7.1752 7.6954 10.536 60.916 64.457

E6-2zz 6.8973 7.6954 10.535 57.425 64.789
E8-5 6.9649 7.5601 9.2726 56.174 63.833

E8-5zz 6.8918 7.5601 9.2726 56.036 63.955

(a) (b)

(c) (d)

Figure 5.7 Modal shapes of laminated beams. (a) Mode IV of Tab.5.7. (b) Mode V of Tab.5.7. (c) Mode IV of
Tab.5.8 and Mode V of Table 5. (d) Mode IV of Tab.5.9.
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Table 5.9 Dimensionless natural frequencies, L/b=5, [0/90] beam.

Mode I Mode II Mode III Mode IV Mode V DOFs

TE23 (Giunta et al., 2013) 4.9375 6.4603 9.0852 33.718 50.640 900

EBBT 6.0083 10.102 - 57.186 - 198
FSDT 5.0738 7.5051 - 40.961 - 198
TE2 5.0551 6.9637 10.133 37.566 63.570 396

TE2zz 5.0440 6.9632 10.133 36.384 59.734 462
TE3 4.9947 6.6601 9.8334 36.165 56.963 660

TE3zz 4.9942 6.6593 9.8330 33.851 53.001 726
TE6 4.9462 6.5042 9.1550 34.153 51.527 1848

TE6zz 4.9384 6.5037 9.1550 33.583 50.799 1914
E1-6 5.0212 7.2227 10.235 37.565 60.877 858

E1-6zz 4.9675 7.2227 10.235 34.202 55.170 924

E1-44
4.9406 6.5510 9.2579 34.519 52.504 1518

E1-44
zz 4.9360 6.5503 9.2582 33.564 51.480 1584

E2-4 4.9438 7.2222 10.237 33.957 54.648 1122
E2-4zz 4.9381 7.2222 10.237 33.575 54.094 1188

E2-33
4.9407 6.6589 9.8328 33.927 53.147 1452

E2-33
zz 4.9362 6.6586 9.8328 33.590 52.615 1518

E3-4 4.9435 7.2154 10.237 33.920 54.637 1650
E3-4zz 4.9381 7.2154 10.237 33.586 54.087 1716
E4-4 5.0065 7.2356 10.238 34.749 57.884 594

E4-4zz 5.0059 7.2356 10.236 33.775 54.525 660
E5-3 4.9458 7.2220 10.235 34.525 55.559 858

E5-3zz 4.9407 7.2220 10.235 33.613 54.139 924
E6-2zz 4.9518 7.2222 10.235 33.758 54.156 660
E6-13

zz 4.9411 6.6586 9.8328 33.713 52.624 990
E8-5 6.9649 7.5601 9.2726 56.174 63.833 1386

E8-5zz 6.8918 7.5601 9.2726 56.036 63.955 1452
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Sandwich Beams

The sandwich beams considered in this section consist of structural face sheets (f) bonded to a
core (c), whose material properties are:

Ef = 68.9GPa Ec = 179.14MPa Gf = 26.5GPa Gc = 68.9MPa

ρf = 2687.3Kg/m3, ρc = 119.69Kg/m3

The first structure has a rectangular cross-section, where the thicknesses of the face sheets and
the core are hf = 0.40624 and hc = 6.3475 mm, respectively and the width is b = 25.4 mm.
The length is L = 1.2187 m and both ends are clamped. The results of the present theories are
compared with those found in (Howson and Zare, 2005) and (Banerjee et al., 2007) where the
experimental values of Raville (Raville et al., 1961) were reported, and with those of a three-
dimensional FEM solution (see Tab.5.10). The modal shapes considered are the first seven
flexural modes on yz-plane and the first two torsional ones. For the latter, it is worth noting
that expansions TE7 and E8 give best results whereas, for the flexural modes, the use of zig-zag
term shows significant improvement of the related solutions, especially for TE1 and TE2.
The subsequent analysis involves a clamped-clamped sandwich beam with a lower length-
to-thickness ratio (L/h = 5). The cross-section is square and the ratio hc/hf is assumed to
be equal to 8. The first eight dimensionless frequencies are compared with a FEM solution,
obtained using solid elements HEX20 of MSC NASTRAN c©. The values are presented in the
following dimensionless form:

ω̄ =
L2

b

√

ρf
Gf

ω

Given the results in Tab.5.11, it is clear that only refined kinematic models are able to describe
the dynamic behaviour of this kind of structure. First of all, the improvements introduced by
the zig-zag term are more evident than in the previous example. For instance, considering the
natural dimensionless frequency computed with TE7, the relative error decreases from 12% to
0.05%. Further improvements concerns the VII frequency, whose related modal shape (Fig.5.8-
b) involves an important deformation of the soft core of the structure. In this case, considering
the expansion TE3, the error decreases approximately from 100% to 8%. For the remaining
frequencies, the increase of the terms in the displacement field is more effective than the use of
the zig-zag function. Mode VI (Fig.5.8-a) is an antisymmetric modal shape with respect to the
yz-plane while mode VIII (Fig.5.8-c) involves again the deformation of the core. Furthermore,
it must be noted that the last mode is detected only by the miscellaneous expansions (in which
the order of Taylor-type polynomials is at least 4) and by E9 expansions. The latter provide
appreciable results for all eight dimensionless frequencies with a low number of degrees of
freedom.

5.2.2 The Functionally Graded cylinder

In this example a FGM sandwich cylinder is studied. Referring to Fig.5.9, the ratios length-to-
mean radius (L/R) and mean radius-to-thickness (R/h) are assumed to be 5 and 10, respec-
tively. The FG core is perfectly bonded to two isotropic faces, whose thicknesses are equal to
h1 = h3 = 0.1h. The Young’s modulus and the mass density of the core vary according to the
following formula:
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Table 5.10 Comparative results for the natural frequencies [Hz] of a fixed-fixed sandwich beam.

Mode I Mode II Mode III Mode IV Mode V Mode VI Mode VII Mode VIIIa Mode IXa

Exper.(Raville et al., 1961) - - 185.50 280.30 399.40 535.20 680.70 - -
(Howson and Zare, 2005) 34.597 93.100 177.16 282.78 406.33 544.33 693.79 - -

DSM (Banerjee et al., 2007) 34.342 91.385 171.69 270.36 383.27 506.88 638.39 - -
FEM 3D 34.817 93.676 178.20 284.37 408.44 546.93 696.77 298.97 598.88

EBBT 35.435 97.668 191.44 316.41 472.62 660.22 879.53 - -
FSDT 35.418 97.563 191.09 315.53 470.77 656.75 873.58 - -
TE1 35.418 97.563 191.09 315.53 470.77 656.75 873.58 1137.9 2276.4

TE1zz 34.696 93.340 177.58 283.34 407.15 545.29 695.54 1137.9 2276.2
TE2 35.628 98.146 192.24 317.45 473.70 660.93 879.34 868.71 1738.2

TE2zz 34.895 93.853 178.50 284.72 408.97 547.56 698.15 867.86 1733.9
TE4 35.229 95.567 183.61 296.26 430.67 583.69 753.05 365.31 729.38

TE4zz 34.958 94.016 178.79 285.15 409.54 548.28 698.98 365.10 728.80
TE7 35.043 94.518 180.35 288.72 416.26 559.41 715.75 338.73 674.84

TE7zz 34.951 93.977 178.75 285.08 409.43 548.10 698.71 338.66 674.66
E2-5 36.580 98.428 187.31 298.96 429.71 575.72 734.49 1139.0 2276.7

E2-5zz 36.480 97.893 185.70 295.37 423.06 564.85 718.28 1139.0 2276.7
E4-33 35.071 94.825 181.53 291.72 422.05 569.17 731.09 867.43 1733.4

E4-33
zz 34.982 93.836 178.28 284.84 409.31 547.13 701.35 867.23 1732.1

E5-22 34.984 94.369 180.10 288.38 415.81 558.89 715.30 867.36 1733.2
E5-22

zz 34.892 93.845 178.48 284.69 408.92 547.50 698.05 867.26 1732.6
E8-5 35.904 96.692 184.19 294.30 423.49 568.03 725.46 369.69 730.74

E8-5zz 35.809 96.184 182.65 290.86 417.11 557.55 709.79 369.55 730.50

(−): expansions with zig-zag term.
a: torsional mode.
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Table 5.11 Comparative results for the dimensionless frequencies of a fixed-fixed sandwich beam with L/b = 5.

Mode Ia Mode IIa Mode IIIc Mode IVa Mode Vb Mode VI∗ Mode VII∗ Mode VIII∗ DOFs

FEM 3D 2.0308 4.3874 6.6198 7.3156 7.7618 10.461 10.603 10.673 68277

EBBT 14.373 35.786 - 61.872 9.4430 - - - 279
FSDT 10.367 22.116 - 35.737 7.9752 - - - 279
TE1 10.368 22.116 15.118 35.737 7.9752 30.233 88.065 - 279

TE1zz 2.1069 4.6382 15.091 7.8576 8.8191 29.965 19.171 - 372
TE3 3.4838 7.1907 13.763 11.428 7.9197 31.614 21.320 - 930

TE3zz 2.1030 4.6302 15.896 7.8498 7.9198 29.963 11.445 - 1023
TE6 2.2745 4.8532 7.0430 7.9833 7.8136 12.188 12.294 12.252 2604

TE6zz 2.0325 4.3951 6.9046 7.3309 7.8136 11.402 11.032 12.252 2697
TE7 2.2687 4.8424 6.9949 7.9683 7.8120 11.847 11.971 12.234 3348

TE7zz 2.0319 4.3923 6.8579 7.3222 7.8120 11.162 10.805 12.234 3441
E1-34 2.1753 4.6773 7.7521 7.4934 7.8533 13.142 12.132 19.943 1953

E1-34
zz 2.0386 4.4155 7.4239 7.3746 7.8533 12.710 11.330 19.943 2046

E5-3zz 2.0434 4.4312 15.079 7.4039 8.1020 29.911 11.378 - 1302
E8-5zz 2.1022 4.6233 7.3860 7.8253 7.8947 12.540 17.664 - 2046
E9-2zz 2.0343 4.3993 8.6952 7.3368 8.0206 12.493 13.502 16.390 2418
E9-3zz 2.0317 4.3914 6.9315 7.3220 7.8181 11.114 10.823 12.284 4650
E9-4zz 2.0299 4.3850 6.7931 7.3065 7.8055 10.924 10.760 11.698 7626

(−): expansions with zig-zag term.

− : results not provided by the model.
∗: mode in Fig.5.
a: bending mode in z − direction.
b: bending mode in x− direction.
c: torsional mode.
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(a) (b) (c)

Figure 5.8 Modal shapes of sandwich beam. (a) Mode VI (b) Mode VII (c) Mode VIII.

f = (f1 − f2)

(

2|ζ|
h2

)α

+ f2 (5.4)

where h2 is the core thickness, ζ is the generic coordinate (−h2
2 < ζ < h2

2 ) and the exponent
α assumes the values 3, 5 and ∞. For this case, E1 and E2 are assumed to be 70 and 380
GPa, whereas the mass densities ρ1, ρ2 are 2702 and 3800 Kg/m3, respectively. The Poisson’
s ratio ν is constant and equal to 0.3. For the sake of clarity, Fig.5.9 shows how the properties
E and ρ change along the thickness. The results in Tab.5.12 are reported in terms of non-

dimensional frequency parameter ω̄ = ωh
√

ρ2
E2

and compared with those presented in (Wu and

Kuo, 2013), in which a semi-analytical solution based on the finite layer method was developed
for the simply-supported cylindrical structures. As expected, accuracy improves when the
displacement field is enriched. The two graphs of Fig.5.10 illustrate how the percentage error

(
(ω̄−ω̄ref )×100

ω̄ref
) varies with respect to the number of degrees of freedom (DoF). For both values

of the exponent α (3 and ∞), it is possible to note that higher order models are needed to reach
acceptable results for all modes of deformation and indeed, by using either the tenth-order
Taylor expansion or the E9-4 series, errors remain lower than 5%.

R

h2

h

ζ

α=1
α=3
α=5

α=inf

h/2

-h/2
f

Figure 5.9 Cylinder cross-section and variations of the generic property f along the thickness.

5.2.3 Thick metallic and composite cylinders

This section presents the results obtained from free-vibration analyses carried out on moder-
ately thick shells at standstill. Later on, the same structures will be considered in order to
evaluate the effects of the rotational speed on their frequencies.
First of all, a thick isotropic cylinder has been considered. Its material properties are: Young’s
modulus E = 207 GPa, Poisson’s ratio ν = 0.28 and density ρ = 7860 kg/m3. Both ends are
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free (F-F) and the length, the mean radius and the thickness of the structure are 0.254 m, 0.09525
m and 0.0381 m, respectively. This cylinder was previously studied in (Wang et al., 1998) where
its three-dimensional mode shapes were accurately classified. The accuracy of the 1D-CUF ele-
ments is evaluated, comparing the natural frequencies with those obtained using theoretical as
well as experimental approaches. It is possible to observe in Tab.5.13 that both TE expansions
(TE8 and TE9) yield results very close to the 3D solution for all considered modes.
Secondly, a thick cylinder made of orthotropic material is studied. The mechanical properties
are: E11 = 211 GPa, E22 = E33 = 24.1 GPa, G12 = G13 = G23 = 6.9 GPa, ν12 = ν13 = ν23 =
0.36 and ρ = 1967 kg/m3. The thickness-to-diameter and the length-to-diameter ratios are
α = 0.1667 and k = 2.5, respectively, with the mean diameter equal to 0.1 m. The considered
structure is simply supported and clamped at its ends and the layers have the same thickness.
The natural frequencies computed with various Taylor-like expansions, and for different lam-
ination schemes, are listed in Tab.5.14. For the purpose of comparison, in the last column the
results obtained with the DIQUMASPAB software are shown. It should be noted that the beam
element TE8 provides accurate results, the maximum percentage error is approximately 7% for
the radial mode n = 3 and lamination scheme [0o/0o]. Furthermore, it is well known that the
lamination scheme strongly affects the order of appearance of the modes. For instance, when
the ply angle is equal to 90o, the shell-like modes occur at higher frequencies than those relating
to the bending and extensional deformations, contrary to what happens for 0o.
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Table 5.12 Non-dimensional frequencies parameter ω̄ for a sandwich FGM cylinder.

α (m,n) TE5 TE6 TE8 TE9 TE10 E9-4 LD33 (Wu and Kuo, 2013)

3

(1,1) 0.015361 0.015361 0.015360 0.015360 0.015357 0.015360 0.015396
(1,2) 0.012379 0.011991 0.010700 0.010572 0.010572 0.010570 0.010603
(1,3) 0.037004 0.027878 0.023520 0.023487 0.022739 0.023055 0.022764
(1,4) 0.069182 0.068064 0.050075 0.043592 0.043541 0.043031 0.041413
(2,1) 0.037971 0.037967 0.037962 0.037962 0.037905 0.037962 0.038044
(2,2) 0.024680 0.023535 0.022843 0.022764 0.022762 0.022762 0.022814
(2,3) 0.041048 0.033589 0.028462 0.028326 0.027616 0.027917 0.027637
(2,4) 0.075675 0.070775 0.053192 0.047022 0.046805 0.046301 0.044643
(3,1) 0.055409 0.055400 0.055380 0.055379 0.055032 0.055380 0.055498
(3,2) 0.040272 0.038185 0.037661 0.037585 0.037582 0.037582 0.037661
(3,3) 0.049534 0.043988 0.037851 0.037544 0.036867 0.037163 0.036897
(3,4) 0.088012 0.076183 0.059094 0.053461 0.052947 0.052460 0.050754
(4,1) 0.066753 0.066750 0.066674 0.066672 0.066173 0.066672 0.066811
(4,2) 0.055221 0.052033 0.051449 0.051352 0.051346 0.051348 0.051442
(4,3) 0.061498 0.057241 0.049866 0.049301 0.048679 0.048912 0.048636
(4,4) 0.106066 0.084568 0.067819 0.062819 0.061887 0.061404 0.059622

5

(1,1) 0.014674 0.014673 0.014673 0.014673 0.014672 0.014673 0.014728
(1,2) 0.012008 0.011629 0.010369 0.010235 0.010236 0.010233 0.010286
(1,3) 0.036057 0.027151 0.022950 0.022915 0.022153 0.022466 0.022212
(1,4) 0.067267 0.066243 0.048739 0.042526 0.042470 0.041959 0.040374
(2,1) 0.036278 0.036273 0.036269 0.036269 0.036271 0.036269 0.036397
(2,2) 0.023750 0.022622 0.021939 0.021854 0.021853 0.021853 0.021938
(2,3) 0.039935 0.032645 0.027691 0.027547 0.026820 0.027119 0.026885
(2,4) 0.073364 0.068858 0.051761 0.045849 0.045614 0.045111 0.043497
(3,1) 0.052961 0.052952 0.052930 0.052929 0.052798 0.052928 0.053116
(3,2) 0.038704 0.036648 0.036124 0.036042 0.036013 0.036039 0.036172
(3,3) 0.048072 0.042645 0.036698 0.036371 0.035691 0.035972 0.035768
(3,4) 0.084994 0.074066 0.057468 0.052071 0.051528 0.051034 0.049390
(4,1) 0.063862 0.063859 0.063776 0.063774 0.063708 0.063774 0.063998
(4,2) 0.053099 0.049964 0.049370 0.049266 0.049261 0.049262 0.049433
(4,3) 0.059573 0.055414 0.048263 0.047658 0.046905 0.047268 0.047061
(4,4) 0.102079 0.082142 0.065901 0.061110 0.060092 0.059630 0.057938

∞

(1,1) 0.013160 0.013160 0.013159 0.013159 0.013156 0.013159 0.013170
(1,2) 0.010916 0.010570 0.009423 0.009302 0.009301 0.009301 0.009304
(1,3) 0.032905 0.024767 0.020979 0.020948 0.020254 0.020543 0.020239
(1,4) 0.061290 0.060407 0.044434 0.038878 0.038829 0.038352 0.036854
(2,1) 0.032540 0.032536 0.032532 0.032532 0.032554 0.032531 0.032555
(2,2) 0.021441 0.020402 0.019777 0.019701 0.019701 0.019700 0.019710
(2,3) 0.036398 0.029727 0.025240 0.025120 0.024475 0.024741 0.024440
(2,4) 0.066673 0.062774 0.047179 0.041896 0.041694 0.041225 0.039696
(3,1) 0.047522 0.047513 0.047494 0.047494 0.047568 0.047493 0.047526
(3,2) 0.034903 0.033008 0.032532 0.032459 0.032459 0.032458 0.032473
(3,3) 0.043723 0.038750 0.033355 0.033070 0.032458 0.032712 0.032423
(3,4) 0.076978 0.067483 0.052349 0.047532 0.047063 0.046611 0.045042
(4,1) 0.057351 0.057349 0.057277 0.057277 0.057450 0.057275 0.057310
(4,2) 0.047908 0.045023 0.044493 0.044403 0.044401 0.044400 0.044410
(4,3) 0.054100 0.050294 0.043797 0.043275 0.042698 0.042926 0.042609
(4,4) 0.092171 0.074786 0.059985 0.055719 0.054865 0.054426 0.052797

m: half-waves in y-direction.

n: half-waves in circumferential direction.
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Figure 5.10 Percentage error versus the number of degrees of freedom.
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Table 5.13 Frequencies [Hz] at standstill of the thick isotropic cylinder.

Modal description Frequency [Hz]

Mode Type n m TE8 TE9 2D(Guo et al., 2001) 3D(Wang et al., 1998) Exp.(Wang et al., 1998)

Pure Radial 2 0 2746 2606 2573 2594 2570
Radial Shearing 2 1 3101 2993 2950 2989 2962
Axial Bending 1 1 6233 6230 6239 6240 6286
Global Torsion 0 1 6313 6313 6320 6291 -

Radial Shearing 2 2 6484 6433 - 6503 6536
Gobal Bending 1 2 7038 7033 7134 7109 7104
Radial Shearing 3 1 7574 7502 - 7219 7100

Extensional 0 0 8111 8108 8096 8081 8149
Extensional 0 1 8558 8551 - 8567 8615
Extensional 0 2 8821 8815 - 8845 8886

Longitudinal 0 0 11272 11269 11266 11460 11536
Circumferential 1 1 12673 12673 12653 12647 12616

-: result not provided.
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Table 5.14 Frequencies [Hz] at standstill of the C-S composite cylinder.

Mode Type n m TE6 TE7 TE8 DQM∗

0o/0o

Extensional 0 0 10167. 10160. 10160.(0.04) 10155.
Bending 1 1 2885.8 2862.4 2862.3(0.16) 2857.5
Radial 2 1 3945.9 3827.8 3781.6(3.94) 3638.0
Radial 2 2 6498.8 6431.5 6272.5(2.16) 6139.7
Radial 3 1 8343.4 8305.3 7978.6(7.07) 7451.6
Radial 3 2 9933.8 9855.8 9589.1(6.79) 8978.8
Torsion 1 0 3745.9 3745.9 3745.9(0.00) 3745.9

30o/-30o

Extensional 0 0 5863.8 5849.7 5849.4(0.26) 5833.7
Bending 1 1 5227.5 5206.1 5204.3(−0.42) 5226.5
Radial 2 1 4485.7 4308.1 4348.3(2.84) 4227.9
Radial 2 2 8315.0 8261.9 8168.3(0.51) 8126.1
Radial 3 1 8790.1 8757.7 8459.4(5.93) 7985.5
Radial 3 2 10736. 10679. 10429.(5.10) 9922.5
Torsion 1 0 8331.1 8322.9 8316.3(−0.82) 8385.8

45o/-45o

Extensional 0 0 3637.7 3631.4 3630.3(0.06) 3627.9
Bending 1 1 4458.7 4446.6 4444.3(−0.05) 4446.9
Radial 2 1 4397.3 4307.9 4271.5(2.71) 4158.6
Radial 2 2 7390.9 7311.1 7229.4(0.70) 7178.9
Radial 3 1 9649.5 9522.0 9236.3(5.03) 8793.7
Radial 3 2 11110. 10989. 10719.(4.98) 10210.
Torsion 1 0 9725.8 9710.4 9706.9(−0.66) 9771.4

90o/90o

Extensional 0 0 3522.9 3520.9 3520.8(0.54) 3501.8
Bending 1 1 2309.3 2302.4 2302.3(0.17) 2298.2
Radial 2 1 6344.7 5998.0 5986.4(3.65) 5775.2
Radial 2 2 7198.1 6909.6 6851.2(2.46) 6686.3
Radial 3 1 14641. 14620. 12836.(6.20) 12086.
Radial 3 2 15043. 14918. 13213.(6.17) 12444.
Torsion 1 0 3745.9 3745.9 3745.9(0.00) 3745.9

0o/90o/0o

Extensional 0 0 8735.9 8733.6 8731.0(0.00) 8731.7
Bending 1 1 2869.0 2845.3 2845.2(0.20) 2839.4
Radial 2 1 4135.6 4044.6 3998.8(4.02) 3843.9
Radial 2 2 6597.1 6543.0 6384.8(2.31) 6240.5
Radial 3 1 8989.6 8951.6 8621.3(6.83) 8069.7
Radial 3 2 10465. 10382. 10104.(6.75) 9465.0
Torsion 1 0 3745.9 3745.9 3745.9(0.00) 3745.9

∗: first-order shear deformation shell theory.

In brackets, the relative errors: (100*(DQM-TE8))/DQM.



74 CHAPTER 5

5.3 The spinning structures

5.3.1 Classical beam theories

In order to assess the theory presented in Sec.3.2, shafts made of isotropic material are here
considered. The boundary conditions and the ratio between the cross-section dimensions are
assumed to be problem’s parameters. Ten finite elements are used for the discretization along
the y − axis. With the purpose of enabling a general application of results, they are presented
in non-dimensional form by adopting the following non-dimensional natural frequency and
spinning speed parameters:

ω∗ =
ω

ω0
, Ω∗ =

Ω

ω0
, ω0 =

√

√

EJxxEJyy

ρAL4
,

where Jxx, Jzz are the moments of inertia in the two principal planes, E is the Young’s Modulus,
A the area of the cross-section and L the length of the beam. In the first example, the dynamic
behavior of a beam with Jxx = Jzz which is subjected to different boundaries conditions is
investigated. Equation (5.5) is exploited for comparison purposes and the relative results are
reported in Fig.5.11.

ωref = λ2

√

EI

ρAL4
∓ Ω (5.5)

λ is a coefficient depending on the boundary conditions.
As easily shown, the results derived by the Unified Formulation match those of the analytical
solutions for every type of boundary condition. Since the effects of shear deformation and
rotatory inertia are considered to be small for this type of rotor, the study has been conducted
using Euler-Bernoulli theory. In Tab.5.15, some values of non-dimensional natural frequency
at different spinning speed parameters are compared with those obtained by Banerjee et al in
(Banerjee and Su, 2004) for the cantilever beam. It should be noted that the frequencies are very
close to those of the reference, especially the value of the critical speeds.

Table 5.15 Frequency ratios of a cantilever spinning beam with Jxx = Jzz .

Ω∗ Theory ω∗
1 ω∗

2 ω∗
3 ω∗

4 ω∗
5 ω∗

6

0
(Banerjee and Su, 2004) 3.516 3.516 22.034 22.034 61.697 61.967

Present 3.510 3.510 21.992 21.992 61.551 61.551

2
(Banerjee and Su, 2004) 1.516 5.516 20.034 24.034 59.697 63.697

Present 1.510 5.510 19.995 23.992 59.559 63.552

3.51
(Banerjee and Su, 2004) 0 7.016 18.534 25.534 58.197 65.197

Present 0 7.020 18.486 25.500 58.052 65.059

4
(Banerjee and Su, 2004) - 7.516 18.034 26.034 57.697 65.697

Present 7.509 17.996 25.990 57.563 65.548

In the same work, Banerjee et al. presented the results related to beams with rectangular cross-
sections. Figure 5.12 shows how the first two flexural natural frequencies are affected by the
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Figure 5.11 The variation of non-dimensional natural frequencies with spinning speed parameter for a beam (Jxx,
Jzz) subjected to several boundary conditions (′lines′: Eq.5.5; ′⊙′: CUF).

ratio between the main cross-section dimensions, b/h, when the rotating speed is changing.
The reference solutions are obtained using Eq.5.6, where ω̃x and ω̃z are the natural frequencies
at standstill.

ωx,z =

√

1

2
{−(ω̃2

x + ω̃2
z + 2Ω2)±

√

(ω̃2
x − ω̃2

z)
2 + 8Ω2(ω̃2

x + ω̃2
z)} (5.6)

It is clear that the behaviors of the frequencies in the two principal planes are very different.
In fact, the first frequency decreases until it becomes zero, whereas the second continues to
increase. It is important to note that, for these values of aspect − ratio, the flexural normal
modes in the two planes are alternated. On the contrary, when the width becomes much smaller
than the height, the relationship for the frequency ratios undergoes an observable change. For
instance, if b = 0.1h, the first two mode frequency ratios in the x direction are smaller than the
first one in z direction. This difference is shown in Fig. 5.13, where the first seven frequency
ratios are presented. For the last case, in Tab.5.16 the results obtained with CUF are compared
with the numerical values of frequency ratios presented in ((Banerjee and Su, 2004)).
As the effects of shear deformation can be disregarded when the shaft is very thin, but if this
approximation is no longer valid, other structural models are needed. In the following test case,
a moderate thick cylindrical beam simply supported is analyzed. The length and the radius are
assumed to be equal to 10 m and 0.25 m, respectively. The material has the Young’s modulus
equal to 210 GPa whereas the Poisson coefficient and the density are 0.3 and 7800kg/m3. The
results in Tab.5.17 are compared with those provided by Curti et al. (Curti et al., 1992), who
proposed an analytical procedure based on DSM including the effects of the shear deformation
of the shaft. It is evident that, also in this case, the proposed results strongly agree with the
reference solutions.
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Figure 5.12 The first two frequency ratios w∗

1 and w∗

2 as functions of the spinning speed ratio for various values of
aspect− ratio (′−′: Eq.5.6; ′+′: b/h = 1; ′×′: b/h = 0.7; ′∗′: b/h = 0.5; ′

✷
′: b/h = 0.3 ).
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Figure 5.13 The first seven frequency ratios w∗

1 - w∗

7 as functions of the spinning speed ratio for aspect-ratio equal
to 0.1.
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Table 5.16 Frequency ratios of a cantilever spinning beam with rectangular cross-section (b = 0.1h).

Ω∗ Theory ω∗
1 ω∗

2 ω∗
3 ω∗

4

0
(Banerjee and Su, 2004) 1.1119 6.9680 11.119 19.511

Present 1.1114 6.9658 11.119 19.508

1.11
(Banerjee and Su, 2004) 0 6.8623 11.307 19.473

Present 0 6.8732 11.284 19.475

2
(Banerjee and Su, 2004) 0 6.6637 11.632 19.404

Present 0 6.6611 11.633 19.401

4
(Banerjee and Su, 2004) - 5.6679 12.900 19.080

Present - 5.6638 12.901 19.077

6
(Banerjee and Su, 2004) - 3.4910 14.536 18.530

Present - 3.4818 14.538 18.526

7.1
(Banerjee and Su, 2004) - 0 15.526 18.118

Present - 0 15.524 18.116

8
(Banerjee and Su, 2004) - - 16.3367 17.7348

Present - - 16.3399 17.7310

Table 5.17 Forward critical speeds predicted by CUF for the test case of a simply supported shaft.

Mode Number (Curti et al., 1992) EBBM FSDT

1 63.869 63.699 63.550
2 253.769 255.001 252.449
3 564.741 573.379 564.299
4 989.050 1019.405 988.400
5 1516.866 1599.400 1519.259

EBBM stands for Euler-Bernoulli Beam Model.

FSDT stands for First-order Shear Deformation Theory.
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5.3.2 Higher order beam theories for spinning composite sha fts

Cylindrical composite shaft

This section shows the results related to analyses carried out on composite thin-walled struc-
tures. The first case concerns the dynamic study of hollow rotating cylinders whose material
and geometrical features are summarised in Tab.5.18. The shaft has been discretised with seven
4-nodes beam elements and it is supported by one bearing at each end, whose stiffnesses kxx
and kzz are 1740 GN/m. The first critical speeds obtained with 1D-CUF theories are shown
in Tab.5.19 and compared with those found in (Chang et al., 2004), adopting the [90o/45o/-
45o/0o6/90o] lamination scheme. The results for both materials are within the interval of refer-
ence speeds, and the differences between the three theories (TE2, TE3 and TE4) are essentially
negligible. Furthermore, the effects of the aspect ratio for the graphite-epoxy shaft are also in-
vestigated. As expected, when the structure becomes thicker, the critical speeds occur at higher
values, and the differences between the three expansions increase. In fact, when the aspect ratio
is equal to 2, TE3 and TE4 lead to similar results, whereas TE2 overestimates the critical speed
of 10%. In addition, considering the same material, the effects due to the lamination scheme
have been evaluated and the results are shown in Tab5.21. The increasing the lamination angle
with respect to the longitudinal direction reduces the shaft stiffness and causes a consequent
reduction in the critical speeds. Some evident discrepancies can be observed between the re-
fined beam models and those found in literature. In fact, when θ is equal to 15o, 30o or 45o,
the present results are closer to speeds obtained with the shell theory SST than those of clas-
sical beam models. In order to show the accuracy of the CUF elements, natural frequencies of
the boron-epoxy shaft (Tab.5.18), computed with TE elements, are listed in Tab.5.22 and com-
pared with the results found in (Boukhalfa, 2011), where a first-order shear beam theory with a
torsion function was proposed, and with those obtained using Di.Qu.M.A.S.P.A.B., a free soft-
ware based on the Differential Quadrature Method (GDQ) for shells and plates. At least the
third-order theory (TE3) is necessary to obtain accurate results for bending as well as torsional
modes. Moreover, it is worth noting that remarkable differences exist between the first natural
frequencies of (Boukhalfa, 2011) and those obtained with the other approaches, especially for θ
equal to 15o, 30o, 45o and 60o. The use of a constant shear correction factor could be the reason
for these important discrepancies, since the shear effects are closely related to the lamination
scheme.

Thin-walled composite shaft

In the following numerical illustrations, box beams with thin walls, whose dimensions are
shown in Tab.5.18, are studied. The results are displayed for different cross-section height-
to-width ratios (R = b/c, Fig.5.14) and lamination angles (θ), in terms of non-dimensional
frequency (f̄ = f/fn), as a function of the speed parameter (Ω̄ = Ω/fn). The value fn is the nat-
ural frequency of a cantilever graphite-epoxy box beam with R = 1 and θ = 90 obtained with
a 2D finite element solution (fn = 52.649 [Hz]). Figure 5.15 shows how the first two frequency
ratios vary with the rotational speed for θ equal to 0o and 90o, using various expansions. As
expected, the theory order does not affect the trend of the branches, with the exception that
curves start at lower values when the displacement field is enriched, and these differences are
more evident for the case in which θ is equal to 0o. This fact demonstrates that classical models
(and ad-hoc theories!) cannot guarantee the same accuracy for all lamination angles, thus con-
firming that a simple method to conceive increasingly accurate theories could be a very useful
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Table 5.18 Material and geometrical features of composite shaft.

Dimensions Cylinders Box beam

Thickness (h) [m] 0.001321 0.01016
Width (c)[m] 0.1269∗ 0.1016

Length (L)[m] 2.470 1.016

Materials Boron-epoxy (Chang et al., 2004) Graphite-epoxy(Chang et al., 2004)

E11 [Gpa] 211.0 139.0
E22 [Gpa] 24.1 11.0
G23 [Gpa] 6.90 3.78
G31 [Gpa] 6.90 6.05
G12 [Gpa] 6.90 6.05
ρ [kg/m3] 1967.0 1578.0

ν12 0.360 0.313
∗: mean diameter.

Table 5.19 Critical speeds (rpm) of composite shafts for [90o/45o/-45o/0o
6/90o].

Theory Boron-epoxy Graphite-epoxy

SST (Chang et al., 2004) 5872 5349
EBBT (Chang et al., 2004) 5919 5302
BTBT (Chang et al., 2004) 5788 5113
FSDT (Chang et al., 2004) 5762 5197

TE2 5808 5256
TE3 5766 5232
TE4 5724 5220

SST : Sanders shell theory.

EBBT : Euler-Bernoulli beam theory.

BTBT : Bresse-Timoshenko beam theory.

FSDT : First-order shear deformation theory.

tool. Moreover, in order to evaluate the effect due to the ply angle, the first two frequency
ratios are shown in Fig.5.16, adopting the TE2 and TE6 expansions. Critical speeds occur at
different values, depending on the lamination angle, and maximum and minimum velocities
occur for θ = 0o and θ = 90o, respectively. Similar results were obtained by Librescu et al. in
(Song and Librescu, 1997a). In addition, it must be noted that different lamination schemes
determine the occurrence of couplings between different deformation modes. For instance, in
Fig.5.14, two different configurations [θT/θL/θB/θR] are studied: Case I [45o/-45o/-45o/45o]
and Case II [45o/-45o/45o/-45o]. The frequencies (f) and damping (D) ratios are computed as
functions of the rotating speed using a number of displacement models (Fig.5.17 and Fig.5.18).
Classical theories (EBBT and FSDT, Fig.5.17-a) provide qualitatively similar results for the first
configuration, but do not predict any instability range. Nevertheless, with the first-order shear
deformation theory, a veering of the fourth, fifth and sixth branches can be detected. TE3 and
TE6 expansions, instead, correspond to dramatic changes with three instability fields appear-
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Table 5.20 Critical speeds (rpm) of graphite-epoxy shaft for several length-to-diameter ratios.

Theory L/D

2 5 15

SST (Chang et al., 2004) 112400 41680 8585
EBBT (Chang et al., 2004) 329600 76820 9072
BTBT (Chang et al., 2004) 176300 54830 8543
FSDT (Chang et al., 2004) 176300 55706 8527

TE2 240900 65580 8760
TE3 206400 61200 8580
TE4 206400 61200 8580

Table 5.21 Critical speeds (rpm) of composite shaft for various lamination angles.

Theory Lamination

0o 15o 30o 45o 60o 75o 90o

SST (Chang et al., 2004) 5527 4365 3308 2386 2120 2020 1997
EBBT (Chang et al., 2004) 6425 5393 4269 3171 2292 1885 1813
FSDT (Chang et al., 2004) 6072 5331 4206 3124 2284 1890 1816

TE1 6270 4770 3120 2280 1950 1860 1860
TE2 6270 4710 3120 2280 1950 1860 1860
TE3 6060 4170 2760 2160 1935 1860 1830
TE4 6060 4140 2730 2145 1920 1830 1800

ing within the considered speed interval. This configuration involves a dominant twist-motion
therefore models that are able to describe bending-torsional coupling are needed. In addition,
when the expansion order is increased, instability thresholds are predicted at lower speed val-
ues. On the contrary, for the second case, the most important effect is due to shear and, for
this reason, the shearable beam model leads to comparable results with those obtained with
higher-order theories. For both schemes, the gyroscopic coupling markedly affects the system,
causing several veerings of frequency branches.
In the last illustrative example, a rectangular box beam (R = 0.5) is analysed with the purpose
of considering another kind of anisotropy. Hereafter, the reference frequency fn is equal to
25.976[Hz]. Figure 5.19-a shows the first two frequency ratios varing with the speed parameter
when θ is 0o or 15o. We compare four different theories and, for both cases, the curves move
towards lower and lower values when the displacement model is enriched. For θ = 0o (thin
lines), TE3 branches almost overlap TE6 theory branches, while, discrepancies between these
models clearly increase when θ is equal to 15o (bold lines). Therefore, in order to ensure a good
accuracy for other lamination schemes, the TE6 expansion is selected and the results are shown
in Fig.5.19-b. It is worth noting that the curves follow similar paths regardless of the lamina-
tion. In fact, after a veering of the backward frequency branch, two eigenvalues interact and
instability occurs. Furthermore, when θ increases, the instability threshold appears at lower
and lower speeds, while the range of the instability field becomes smaller, ultimately reaching
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Table 5.22 Frequencies at standstill of boron-epoxy shaft.

Lam. Mode (Boukhalfa, 2011) GDQ TE4 TE3 TE2 TE1∗ FSDT∗ EBBT∗

0o

1o Flex. 108.23 109.23 109.24 109.24 113.95 113.95 113.95 119.44
2o Flex. - 357.13 357.15 357.19 403.38 403.37 403.37 475.41
1o Tors. - 379.13 379.14 379.14 379.14 379.14 - -

15o

1o Flex. 94.86 69.57 69.83 70.05 81.73 81.76 81.76 108.39
2o Flex. - 261.23 262.15 262.81 309.33 309.47 309.47 431.46
1o Tors. - 412.23 412.79 412.79 413.60 412.60 - -

30o

1o Flex. 76.71 45.82 46.05 46.60 52.41 52.33 52.33 74.39
2o Flex. - 180.30 181.11 183.10 205.85 205.16 205.16 296.12
1o Tors. - 519.80 519.98 519.98 520.63 519.80 - -

45o

1o Flex. 59.21 37.85 37.98 38.48 39.57 39.54 39.54 43.62
2o Flex. - 150.13 150.55 152.51 156.95 156.30 156.30 173.62
1o Tors. - 638.00 639.43 639.44 691.04 663.24 - -

60o

1o Flex. 45.84 36.49 36.59 36.74 36.75 36.75 36.75 36.89
2o Flex. - 144.11 144.30 145.10 145.35 145.14 145.14 146.84
1o Tors. - 534.03 540.09 540.10 675.61 586.18 - -

75o

1o Flex. 40.74 38.33 38.46 38.58 38.99 39.00 39.00 39.58
2o Flex. - 149.60 149.75 150.42 153.16 153.21 153.21 157.54
1o Tors. - 415.73 419.76 419.71 460.93 429.83 - -

90o

1o Flex. 40.10 39.80 39.95 40.47 40.70 40.79 40.79 41.03
2o Flex. - 154.05 154.18 156.07 159.34 159.71 159.71 163.33
1o Tors. - 379.14 379.14 379.14 379.14 379.14 - -

∗: Poisson locking correction activated.

a minimum for θ = 90o. The effects of ply angles on damping are shown in Fig.5.19-c.

θT

θB

θL θR

c

b

h

Figure 5.14 Sketch of the box beam.
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5.3.3 Highly deformable spinning structures

Thin walled cylinders

The following analyses are devoted to the study of the influence of centrifugal stiffness on the
dynamic behaviour of thin rotating shells (see Sec.3.2.2). To this end, isotropic and composite
cylinders with different dimension ratios, boundary conditions and lamination schemes have
been studied.
In the first numerical computation, a cylinder with thickness-to-diameter ratio α = 0.02 and
length-to-diameter ratio k = 5. The material is isotropic with Young’s modulus (’E’), Pois-
son’s ratio (’ν’) and density equal to 207.0 GPa, 0.3 and 7860 Kg/m3, respectively. Table 5.23
shows the frequencies at standstill for different dimension ratios (α= thickness/diameter and
k=length/diameter with diameter equal to 1) obtained with Taylor-like expansions of fourth
(TE4), fifth (TE5), sixth(TE6) and seventh (TE7) order. For comparison purposes, the last col-
umn shows the frequencies obtained using the DiQuMASPAB code. As expected, increasing
the order of the theory, results converge to reference values for all considered circumferential
wave numbers (’n’) and boundary conditions.

Table 5.23 Frequencies [Hz] at standstill of the isotropic cylinder for various α and k.

n TE4 TE5 TE6 TE7 DQM

Supported-Supported, α = 0.02 and k = 5

1 101.2 101.2 101.2 101.2 101.2
2 96.29 76.25 75.57 64.61 64.61
3 289.4 252.1 189.0 188.1 152.2

Clamped-Clamped, α = 0.02 and k = 5

1 171.4 171.4 171.4 171.4 170.8
2 115.5 99.35 98.63 90.48 90.17
3 300.7 254.5 192.3 191.2 155.9

Clamped-Clamped, α = 0.005 and k = 5

2 75.37 73.90 73.84 73.18 72.73
3 178.3 72.94 59.86 59.63 52.50
4 - 215.8 122.6 92.91 75.54

Clamped-Clamped, α = 0.005 and k = 3

2 168.4 167.5 167.4 167.1 166.6
3 319.1 112.0 104.0 103.6 99.26
4 - 340.9 134.1 107.7 92.38

For the supported-supported condition and ’n’ equal to 2 (α= 0.02 and k=5), Fig.5.20 shows
how the frequency ratio (f/fn) changes with respect to the speed parameter (Ω/fn) using the
TE4, TE6 and TE7 expansions. In spite of the natural frequencies in the non-rotating state are
different, it is interesting to note that the three displacement theories predict same variations of
backward and forward non-dimensional frequencies.
To evaluate the effects of boundary conditions, cylinders with supported-supported and clamped-
clamped ends are considered. The dimensionless frequencies obtained with the TE7 theory are
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Figure 5.20 Dependency of frequency ratio upon the speed parameter for various TE expansions; ’· · · ’: TE4, ’- -
-’: TE6, ’—’: TE7 (n = 2, α = 0.02 and k = 5).

shown in Fig.5.21-a and Fig.5.21-b, respectively.
Also in this case the non-dimensional results are nearly identical despite the different frequen-
cies in the non-rotating state (see Tab.5.23). The graphs also show the frequency parameters
derived from the following analytical solutions

f

fn
=

2n

n2 + 1
(Ω/fn)±

√

1 +
n6 − 2n4 − 1

(n2 + 1)2
(Ω/fn)2 (5.7)

f

fn
=

2n

n2 + 1
(Ω/fn)±

√

1 +
n2(n2 − 1)2

(n2 + 1)2
(Ω/fn)2 (5.8)

f

fn
=

2n

n2 + 1
(Ω/fn)±

√

1 +
n6 + 3n2

(n2 + 1)2
(Ω/fn)2 (5.9)

In particular, Eqs.5.7 and 5.8 were proposed by Endo et al. in (Endo et al., 1984) for the study
of rotating rings. Although the solutions were based on a non-linear shell theory, the expres-
sions present slight differences due to the use of different hypothesis in defining acceleration
and strain terms. On the other hand, using the linear approximation, Chen et al. (1993) pre-
sented Eq.5.9 for the study of high speed rotating shells. Other reference values (•) are taken
from (Endo et al., 1984), where the results presented in (Srinivasan and Lauterbach, 1971) were
reported in the dimensionless form. It should be observed that the TE7 results strongly agree
with those obtained using Eq.5.8.
Assuming α equal to 0.005, the minimum frequency for the non-rotating cylinder occurs for
n = 3 (see Tab.5.23). Figure 5.22-a is the result for this mode.
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Beam results agree with shell solutions, especially with those of Eqs.5.7 and 5.8. The same
consideration can be made for the mode with n = 4 (α = 0.005 and k = 3), whose frequency
variations with respect to the rotational speed are shown in Fig.5.22-b. Table 5.24 lists dimen-
sionless frequencies for five rotational speeds with or without the geometrical stiffening. It
should be observed that the contribution due to the hoop tension becomes more evident as the
circumferential wave number increases.

Ω/fn

0.0 0.1 0.2 0.3 0.4 0.5

Forward

f/f2
with σ0 1.0 0.93 0.87 0.82 0.79 0.77

w/o σ0 1.0(0.0) 0.92(1.1) 0.83(4.6) 0.74(9.8) 0.65(17.7) 0.55(28.6)

f/f3
with σ0 1.0 0.97 0.99 1.05 1.15 1.26

w/o σ0 1.0(0.0) 0.94(3.1) 0.87(12.1) 0.79(24.8) 0.71(38.3) 0.62(50.8)

f/f4
with σ0 1.0 1.01 1.13 1.32 1.54 1.79

w/o σ0 1.0(0.0) 0.95(5.9) 0.89(21.2) 0.82(37.9) 0.75(51.3) 0.66(63.1)

Backward

f/f2
with σ0 1.0 1.09 1.19 1.30 1.43 1.57

w/o σ0 1.0(0.0) 1.08(0.9) 1.15(3.4) 1.22(6.2) 1.29(9.8) 1.35(14.0)

f/f3
with σ0 1.0 1.09 1.23 1.41 1.63 1.86

w/o σ0 1.0(0.0) 1.06(2.8) 1.11(9.8) 1.15(18.4) 1.19(27.0) 1.22(34.4)

f/f4
with σ0 1.0 1.11 1.32 1.60 1.92 2.26

w/o σ0 1.0(0.0) 1.04(6.3) 1.08(18.2) 1.11(30.6) 1.12(41.7) 1.13(50.0)

In brackets, relative errors between the two cases.

Table 5.24 Dimensionless frequencies f/fn vs. dimensionless speed Ω/fn with and without the hoop tension for
thin cylinders.

Other results are presented in Fig.5.23, where the frequencies of a rotating cantilevered cylinder
(α = 0.02 and k = 0.5) are shown. In the graph, the branches are related to the modes with
n = 3 and n = 2. The reference solution was taken from (Guo et al., 2002), where a finite ele-
ment based on a non-linear plant-shell theory was developed. Although there are some slight
discrepancies, trends of curves obtained with TE7 expansion are similar to the reference. It is
worth noting that the present beam element provides very accurate results for Ω=0.

Moderately thick cylinder

Regarding the isotropic cylinder studied in Sec.5.2.3, the evolutions of a number of frequencies
listed in Tab.5.13 as functions of the rotating speed are investigated. Figure 5.24 illustrates how
frequency parameters change with the rotational speed for global bending (n = 1, m = 2) and
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axial bending modes (n = 1, m = 1). It should be noted that the non-linear variation of the
global bending frequencies predicted by the 1D-CUF elements is quite similar to that presented
in (Guo et al., 2001).
Figure 5.25 shows the results for pure radial (m = 0) and radial shearing (m = 1, 2) modes
for n equal to 2 and 3. It is possible to note that a different longitudinal wave number involves
changes in the frequency variations, especially for low values of the circumferential wave num-
ber n. As also stated in (Guo et al., 2001), these differences are not detectable from the above
analytical solutions (Eqs.5.7,5.9). Furthermore, Fig.5.26 illustrates the variations of the exten-
sional and torsional frequencies. Although nearly constant, the two extensional frequencies
exhibit different behaviour upon the speed variation. Indeed, the branch related to m = 0
grows after Ω/f00 = 0.25, while in contrast, for m = 2, the frequency decreases after an initial
increase. Regarding the torsional frequency, the curve monotonically decreases with the speed,
as also shown in (Guo et al., 2001).

Similarly to the case of thin cylinders, Tab.5.25 lists forward and backward dimensionless fre-
quencies for various speed parameters, with and without the initial stress. The structure is
clamped at both ends, and the frequencies at standstill are f2 = 4993.53 Hz and f3 = 8435.53
Hz. Despite the thick wall, natural frequencies are considerably lower when the contribution
of the initial stress is overlooked, especially for higher speed values. In addition, relative errors
are very close to those computed for the thin cylinder in Tab.5.24.

Laminated moderately thick cylinders

The effects of the rotational speed on the natural frequencies have been evaluated also for the
laminated cylinders of Sec.5.2.3. Figures 5.27-5.29 show the frequency parameters as functions
of the speed for various lamination schemes. In particular, in the first two graphs, bending fre-
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Figure 5.26 Dependency of frequency ratio upon the speed parameter of extensional (n=0,2, m=0) and global
torsion modes (n=0, m=0). TE9, Ref: (Guo et al., 2001).

Ω/fn

0.0 0.1 0.2 0.3 0.4 0.5

Forward

f/f2
with σ0 1.0 0.93 0.88 0.83 0.80 0.77

w/o σ0 1.0(0.0) 0.92(1.1) 0.84(4.5) 0.75(9.6) 0.66(17.5) 0.56(27.3)

f/f3
with σ0 1.0 0.97 0.99 1.05 1.12 1.2

w/o σ0 1.0(0.0) 0.94(3.1) 0.87(12.1) 0.79(24.8) 0.71(36.6) 0.62(48.3)

Backward

f/f2
with σ0 1.0 1.09 1.18 1.29 1.45 1.56

w/o σ0 1.0(0.0) 1.07(1.8) 1.14(3.4) 1.20(7.5) 1.25(13.8) 1.30(16.7)

f/f3
with σ0 1.0 1.08 1.22 1.40 1.62 1.86

w/o σ0 1.0(0.0) 1.05(2.8) 1.09(10.6) 1.12(20.0) 1.13(30.2) 1.14(38.7)

In brackets, relative errors between the two cases.

Table 5.25 Dimensionless frequencies f/fn vs. dimensionless speed Ω/fn with and without the hoop tension for
the thick cylinder.
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quencies vary almost linearly only when the lamination schemes are [0o/0o] and [0o/90o/0o].
The non-linear trend of the other curves is much more evident for the angle ply configurations
and when the longitudinal wave number, m, is equal to 2 (Fig.5.27-b). Figures 5.28-a and 5.28-b
show the forward and backward branches for n equal to 2 and 3, respectively. Although the
influence of the stacking sequence decreases when ’n’ increases, there remain differences in the
frequency variations at higher speed values. Finally, Fig.5.29 reveals that the torsional branch
variations also depend on the lamination scheme.
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Figure 5.27 Dependency of the frequency ratios upon the speed parameter for two different longitudinal wave
number. TE8. ’-+-’: [0o/0o], ’-×-’: [30o/30o], ’-*-’: [45o/45o], ’-�-’: [65o/65o], ’-�-’: [90o/90o], ’-◦-’: [0o/90o/0o].

Rotating ring

We now consider a thin ring, rotating about its centre. The mean radius is 0.5 m, and the rect-
angular cross-section has the width and the height equal to 0.05 and 0.02 m, respectively. The
structure made of aluminium (Young’s Modulus, E=73.1 GPa; density, ρ=2770 kg/m3; Pois-
son’s ratio, ν= 0.33) has been modelled using 40 9-node Lagrange elements above the cross-
section, and 4 2-node beam elements along the longitudinal direction (the total number of
degrees of freedom is 3600). Figure 5.30 shows the first natural frequencies as a function of
the spin speed and the results are compared with those presented in (Genta, 2005), which were
obtained with 40 brick 20-node elements. It should be noted that the 1D results strongly agree
with the reference solution for all frequencies, which correspond to out-of-plane and in-plane
mode shapes.

Rotating disc

Since the Lagrange-type beam elements allows one to impose non-classical boundary condi-
tions, a thin hollow disc, clamped at the bore, is now considered. The outer radius, the inner
radius, and the uniform thickness are 203.2, 101.6 and 1.016 mm, respectively. The material
properties are E=2.1 GPa, ρ=7800 kg/m3, and ν= 0.3. The cross-section has been again mod-
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Figure 5.28 Dependency of the frequency ratios upon the speed parameter for two different circumferential wave
number. TE8. ’-+-’: [0o/0o], ’-×-’: [30o/30o], ’-*-’: [45o/45o], ’-�-’: [65o/65o], ’-�-’: [90o/90o], ’-◦-’: [0o/90o/0o].
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Figure 5.29 Dependency of the frequency ratios upon the speed parameter for the torsional mode. TE8, n = 1,
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Figure 5.30 Frequencies [Hz] vs. spin speed [rad/s] for a rotating ring; ’—’: LE9, ’�’: solid FE model (Genta,
2005)

elled with 40 9-node Lagrange elements (4 in the radial direction, and 10 along the circumfer-
ence) but, contrary to the previous case, a single 4-node beam element has been used along
the longitudinal direction. The total number of degrees of freedom of this mathematical model
is 2160. Figures 5.31 graphically show the evolutions of frequencies with the spin speed for
modes characterised by a different number of nodal diameters, ′m′. The frequencies have been
reported in the inertial frame in order to compare the present solution with the experimen-
tal data reported in (Mote and Nieh, 1971). Despite slight differences in the computation of
frequencies at Ω=0, graphs reveal that the unified 1D formulation accurately describes the dy-
namics of highly deformable structures with a low number of degrees of freedom.

Rotating disc on a flexible shaft

The rotor is constituted by a thin disc, whose radius and thickness are rd=0.15, hd=0.005 m,
fixed at one-third of a shaft with length, Ls=0.4 m, and radius, rs=0.01 m. The rotor is simply
supported at each extremity and it is made of steel (E=207 GPa, ρ=7860 kg/m3, and ν= 0.28).
The used mathematical model (2010 degrees of freedom) consisted of 12 L3 for the shaft cross-
section, 24 L9 for the disc, and 7 4-node beam elements along the longitudinal axis. Figure 5.32
shows the first 7 mode shapes at Ω=0, computed with the proposed beam model.
It should be noted that, except the first 2 modes, the deformability of the disc strongly af-
fects the dynamics of the whole structure. Moreover, in Fig.5.33, the corresponding forward
and backward frequencies are compared with results presented in (Combescure and Lazarus,
2008), where Combescure et al. provided a solid finite element solution. The comparison re-
veals that the 1D-CUF formulation leads to accurate results with a limited computational effort
demonstrating that complex-shaped rotors can be easily studied with the present approach.
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Figure 5.31 Frequencies [Hz] vs. spin speed [rpm] for a rotating disc; ’—’: LE9, ’©’, ’△’, ’�’: experimental data
(Mote and Nieh, 1971).

(a) Mode 1, 2 at f = 637.95 rad/s (b) Mode 3, 4 at f = 1001.7 rad/s

(c) Mode 5 at f = 1389.7 rad/s (d) Mode 6, 7 at f = 2179.1 rad/s

Figure 5.32 First seven mode shapes of the disc on the flexible shaft in the non-rotating state.
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Figure 5.33 Frequencies vs. spin speed for a rotating disc on a flexible shaft; ’—’: LE model, ’◦’, ’�’: solid FE
model (Combescure and Lazarus, 2008)

5.4 The centrifugally stiffened structures

To assess the theory of Sec.3.3, several illustrative examples are presented. The boundary con-
ditions and the beam dimensions are the problem parameters. To enable a general application
of results, if not otherwise declared, they are presented in non-dimensional form adopting the
following expressions:

ω∗ =
ω

ω0
, Ω∗ =

Ω

ω0
, ω0 =

√

ρAL4

EJxx
δt =

rh
L

S =

√

AL2

Jxx

where Jxx is the moment of inertia about x-axis, E is the Young Modulus and A the area of the
cross-section. In the first test case, a thin rotating beam is considered and the non-dimensional
results obtained in CUF form are compared with those presented in (Banerjee, 2000) where the
Dynamic Stiffness Method were appled. As presented in Tab.5.26, the results strongly agree
with the reference for all kinds of boundary conditions (B.C.) and for the considered hub off-
set ratios. The boundary conditions are clamped-free (C −F ), clamped-supported (C −P ) and
supported-supported (P −P ). To clarify, the comparison becomes possible if both Coriolis and
the Softening matrices are ignored. In the second analysis, the structure is thicker (S = 30) to
introduce the approximations of Euler-Bernoulli model. To do so, the first order shear defor-
mation theory is needed. The variation of the fundamental non-dimensional frequency of a
cantilever Timoshenko beam with the rotating speed is shown in Tab.5.27 and it is compared
with (Lee and Kuo, 1993), without the use of any shear correction factor. The agreement be-
tween the two sets of results is evident, in fact, the relative error remains below 1%.

Since the unified formulation allows variations of the kinematic theories, higher-order mod-
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Ω∗ = 1 Ω∗ = 5
B.C. ω∗ Theory δt = 0 δt = 1 δt = 2 δt = 3

C − F

1
(Banerjee, 2000) 3.6816 3.8888 10.862 12.483

Present 3.6816 3.8895 10.866 12.488

2
(Banerjee, 2000) 22.181 22.375 32.764 35.827

Present 22.178 22.375 32.773 35.840

3
(Banerjee, 2000) 61.842 62.043 73.984 77.935

Present 61.836 62.032 73.986 77.939

C − P

1
(Banerjee, 2000) 15.513 15.650 22.663 24.729

Present 15.512 15.649 22.670 24.738

2
(Banerjee, 2000) 50.093 50.277 60.906 64.382

Present 50.092 50.275 60.919 64.399

3
(Banerjee, 2000) 104.39 104.59 116.99 121.30

Present 104.42 104.62 117.04 121.36

P − P

1
(Banerjee, 2000) 10.022 10.264 19.684 22.078

Present 10.021 10.264 19.690 22.086

2
(Banerjee, 2000) 39.642 39.889 53.132 57.235

Present 39.638 39.886 53.141 57.248

3
(Banerjee, 2000) 88.991 89.241 103.92 108.93

Present 89.003 89.253 103.94 108.96

Table 5.26 Dependency of the first three dimensionless natural frequency parameters on the variations of the
dimensionless angular speed and hub dimension of a Euler-Bernoulli beam.

Ω∗ (Lee and Kuo, 1993) Present Diff.(%)

0 3.4798 3.4831 0.09
1 3.6452 3.6494 0.11
2 4.0994 4.1064 0.17
3 4.7558 4.7667 0.22
4 5.5375 5.5530 0.27
5 6.3934 6.4144 0.32
6 7.2929 7.3205 0.37
7 8.2184 8.2538 0.43
8 9.1596 9.2039 0.48
9 10.109 10.164 0.54

Table 5.27 Non-dimensional fundamental frequency ω∗ of a cantilever Timoshenko beam as a function of the
rotating speed.
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els are tested. The considered structures are two graphite-epoxy rectangular beams. For both
beams, the width, the length and the hub off-set are 25.4, 800.01 and 63.5 mm, respectively.
The thickness and the fiber orientations are different for the two cases and they are listed in
Tab.5.28 with the material properties. The reference solutions related to the flapwise normal
modes are taken from (Hodges et al., 1996), where some experimental data were reported in
graphical form (Epps and Chandra, 1996). As shown in Fig.5.34, the frequencies obtained with
CUF are in good agreement with the theoretical approaches and experimental data. It is in-
teresting to note that, the second-degree polynomial is sufficient to detect the bending modes
and their related frequency values whereas, for vibration modes dominated by torsion, further
refinements are needed to improve the solutions. In fact, using the fourth-degree polynomial,
the torsional mode frequencies decrease, getting close to reference values. The remaining fre-
quencies labeled with BC are related to chordwise modes.

Case Thickness [mm] Orientation

1 2.97 0o

2 3.22 15o

Property Dimension [GPa]

E11 141.9
E22 = E33 9.780
G21 = G31 6.140

G32 5.520

ν12 = ν13 0.42
ν23 0.54

Table 5.28 Material and dimensions of graphite-epoxy beams.

In order to investigate the effects of the ply angle and the rotational speed on the frequen-
cies of more complex and realistic structures, we analyse a thin-walled box with the following
geometry features and material properties

EL = 206.8GPa ET = 5.17GPa GLT = 2.55GPa GTT = 3.10GPa

νLT = νTT = 0.25, ρ = 1528.15Kg/m3

b = 0.0508m c = 0.2540m t = 0.01016m

where L and T denote parallel and transverse directions to the fibers, b is the width and t the
thickness of the beam wall. The beam and hub lengths are assumed to be 2.032 m. In (Song and
Librescu, 1997b), the dependency of the first angular frequency on both rotational speed and
ply angle orientations was evaluated using a refined theory, where some non-classical effects
such as torsion were taken into account. However, in that case, Coriolis terms were discarded
in order to split the equations describing the flap-lag bending deformation from those related
to the extension-twist motion. In our test case, Coriolis matrix and the term uy,y are included.
Figure 5.35 shows the first two angular frequencies changing with the rotational speed for dif-
ferent fiber orientations. The solid lines are obtained with the second-order expansion TE2,
whereas the dotted curves with the TE4 expansion. With these two displacement models, it
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(a) 0o

(b) 15o

Figure 5.34 Frequencies versus angular speed - "◦": Present (TE2), "⋄": Present (TE4), "�": Theory (Hodges
et al., 1996), "△": Theory (Epps and Chandra, 1996) and "•": Experimental data (Epps and Chandra, 1996).
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is possible to detect the flexural-twist coupling when the ply angles are different from 0o and
90o. Focusing on Fig.5.35-a, under a certain value of rotational speed depending on the fiber
orientation, the dominant modal shape that exhibits the lowest frequency is the flapwise mode.
Due to the centrifugal effect, the frequency rapidly increases until the lag mode frequency be-
comes the lower of the two. The same phenomenon is observed in Fig.5.35-b for the second
angular frequency but, in this case, the threshold speeds determine the interchange between
the lag/torsional modal shapes and those that involve flap/extensional deformations. More-
over, for both cases, the curves computed with TE4 undergo a translation toward lower values,
whereas the trends remain almost similar.

(a) ω1 (b) ω2

Figure 5.35 First angular frequency versus rotational speed for different ply angles - "solid lines": TE2; "dotted
lines":TE4
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5.5 Flutter Analyses

5.5.1 Wing structures

A cantilevered straight plate is considered in the first numerical example. The length (L), the
thickness (t) and the width (c) of the investigated model are 0.305, 0.0762 and 0.001 m, re-
spectively. The material, whose properties are E = 73.8 GPa, ν = 0.3 and ρ = 2768 Kg/m3,
is isotropic. Both flutter velocity [m/s] and frequency [Hz] are computed using both steady
(ST) and unsteady (TM) models with different displacement expansions. These results are re-
ported in Tab.5.29 and compared with those found in (Petrolo, 2011), where the Doublet Lattice
Method (DLM) was combined with Carrera’s Unified Formulation. In this case, the use of the
second-order Taylor-like expansion provides acceptable results with a very low number of de-
grees of freedom. It should be noted that, with the corrected lift coefficient, the flutter velocities
(VF ) computed with the TM are very close to the reference values while, with the ST, they are
generally lower. However, the steady theory provided higher values of the flutter frequencies,
especially with respect to those computed using Theodorsen’s model.

Table 5.29 Flutter conditions for an isotropic plate.

ST TM DLM (Petrolo, 2011)
VF fF VF fF VF fF

TE2
(50.2) (45.000) (60.6) (36.823) - -
56.1 45.435 67.6 35.945 69.4 40.002

TE3
(49.5) (42.904) (59.5) (35.257) - -
55.6 43.622 66.2 34.363 68.5 39.029

TE4
(49.8) (43.395) (59.5) (35.244) - -
55.6 43.607 66.2 34.350 68.4 38.995

(): the lift coefficient is not corrected.

The effects of the sweep angle (Λ) are then investigated for the same structure. The ST and TM
results are compared in Tab.5.30 with those presented in (Pagani et al., 2014), where the Dy-
namic Stiffness Method (DSM) was combined with DLM in CUF framework. The analyses of
swept configurations require the use of more refined displacement theories in order to describe
the bending-torsional coupling. For this reason, the third-order theory (TE3) is necessary to
ensure convergence of the results. A positive angle of sweep implies a decrease in the flutter
conditions. The steady theory again predicts lower flutter velocities and higher frequencies
than the TM and DLM, which yield similar velocity values.

Other analyses are carried out on straight and swept composite plates. A six-layer cantilevered
beam is first considered, using the same length as in previous structures, and total thickness
and width 0.804 and 76.2 mm, respectively. The properties of the orthotropic material are
EL = 98 GPa, ET = 7.90 GPa, GLT = 5.60 GPa, ν = 0.28 and ρ = 1520 kg/m3. The flut-
ter conditions for the stacking sequence [302/0]S are compared in Tab.5.31 with those predicted
by the DLM (Petrolo, 2013), using three different displacement theories. Despite the discrep-
ancies between the flutter frequencies, the three aerodynamic approaches again predict similar
flutter velocities for this case. This is also confirmed in Tab.5.32 where, for different lamination
schemes, the flutter velocities computed using the TE3 displacement model are compared with
2D (CLT) and experimental (EXP) solutions.
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Table 5.30 Flutter conditions for an isotropic plate.

VF [m/s] fF [Hz]
Λ Theory TE2 TE3 TE4 TE2 TE3 TE4

0o
ST 56.086 55.595 55.589 45.435 43.607 43.622
TM 67.564 66.247 66.231 35.945 34.363 34.350

DLM(Pagani et al., 2014) 69.388 68.503 68.523 40.002 39.029 38.995

10o
ST 55.949 54.630 54.609 41.602 40.774 40.708
TM 64.270 63.019 62.986 32.912 32.193 32.155

DLM(Pagani et al., 2014) 65.441 64.305 64.506 38.362 37.361 37.352

20o
ST 58.665 53.853 53.721 38.914 37.791 37.635
TM 64.845 60.352 60.210 31.223 29.859 29.770

DLM(Pagani et al., 2014) 66.408 61.046 59.130 36.736 35.095 34.793

30o
ST 63.627 53.147 52.714 35.803 33.977 33.750
TM 68.397 57.938 57.514 29.885 27.108 26.864

DLM(Pagani et al., 2014) 70.145 57.747 57.216 34.156 31.887 31.616

Table 5.31 Flutter condition for a six-layer plate. [302/0]S

ST TM DLM (Petrolo, 2013)
VF fF VF fF VF fF

TE2 25.969 27.185 28.726 23.132 28.820 27.813
TE3 24.007 26.318 26.696 22.142 25.938 26.651
TE4 23.915 26.216 26.590 22.038 25.937 26.650

The influence of the lamination scheme on the flutter conditions is also evaluated considering
the [θ2/902

o/−θ2] configuration. Figure 5.36 shows the instability velocities computed with
the TE3 displacement model as a function of the angle-ply θ. Even though the steady approach
yielded more conservative results, it should be noted that the strip theories predict similar
variations of the flutter speeds, which reach maximum values between of 40o and 50o. Instead,
when the DLM is adopted, the flutter speed initially increases with the angle, and then rapidly
decreases when θ is equal to 35o. After this drop, the DLM results fall between those of the two
strip theories. Figure 5.37 also shows both the frequencies and velocities of flutter computed
with the steady and unsteady strip theories for the symmetric lamination schemes [θ/θ/0o/]S
as a function of the lamination angle. Again the theories qualitatively yield the same variations
for these configurations, which involve bending-torsional coupling, and predict maximum val-
ues of the velocities and frequencies for 150o< θ <160o.

A symmetric eight-layer lamination is adopted for the beam configuration. The total thickness
of the laminate is equal to 0.804 mm; the stacking sequence is [-22.5/67.5/22.5/-67.5]S , and
the thicknesses of plies are 0.03678, 0.04824, 0.06432 and 0.25326 mm, respectively. The natural
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Table 5.32 Flutter velocities for a six-layer plate, TE3.

Lamination ST TM CLT(2007) EXP.(1984) DLM(Petrolo, 2013)

[02/90]S 19.2 23.5 23.0 25 23.2
[45/ − 45/0]S 40.1 44.2 40.1 >32 40.3

[452/0]S 25.0 27.8 27.5 28 26.2
[302/0]S 24.0 26.7 27.1 27 25.9
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Figure 5.36 Flutter velocities on the angle ply for the lamination case [θ2/902
o/−θ2]: − ⋆ −: DLM, − + −: TM,

−✷−: ST.
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Figure 5.37 Flutter velocities (bold lines) and frequencies (lines) on the angle ply for the lamination case [θ/θ/0o]S :
−+−: TM, −✷−: ST.
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frequencies (bending and torsion), flutter conditions and the results from the CLT model are
presented in Tab.5.33. The above considerations are also valid for this case.

Table 5.33 Flutter velocities [m/s] for an eight-layer plate, TE3.

f1 f2 f3 f4 f5 VF

Λ = 0o

ST 7.2 45.1 59.1 126.5 182.5 30.7
TM 7.2 45.1 59.1 126.5 182.5 36.5

DLM (Petrolo, 2013) 7.2 45.1 58.9 126.5 181.9 38.2
CLT (2007) 7.3 45.4 59.1 127.7 182.3 38.8

Λ = 30o

ST 5.6 34.5 59.9 96.2 187.5 29.5
TM 5.6 34.5 59.9 96.2 187.5 32.9

DLM (Petrolo, 2013) 5.6 34.4 59.6 95.9 182.7 32.0
CLT (2007) 5.6 34.4 60.0 95.4 182.0 32.4

Following several studies, where the wing was modelled as a box structure, a prismatic thin-
walled beam is considered. The structure, whose dimensions and material properties are listed
in Tab.5.34, is discretized with seven 4-node beam-elements .
According to the [θb/θr/θt/θl] configuration of Fig.5.38 and, in order to consider an arbitrary
lamination sequence where bending-torsion couplings are likely to occur, the [θ/0.1θ/2θ/10θ]
case is studied. Adopting the fourth-order Taylor-like expansion (TE4), the flutter velocities
are computed with the ST, TM and DLM approaches and their trends, as a function of the an-
gle ply, are shown in Fig.5.39. The accuracy of the unsteady strip theory (TM) with respect to
the panel method is acceptable, since the maximum relative difference is about 10%, while the
steady aerodynamic theory always yielded lower speed values. Moreover, Tab.5.35 shows the
flutter velocities for a number of angle values.

Figure 5.38 Sketch of the box beam and coordinate reference system.
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Figure 5.39 Flutter velocities on the angle ply of the box beam: − ⋆−: DLM, −+−: TM, −×−: ST.

Figure 5.40 shows the frequency and damping evolutions as functions of speed for θ=0 using
the three aerodynamic approaches.
Although it was proved that the unsteady strip theory in the CUF framework provides good
results, other analyses are carried out on the previous box structure, using the DLM, in order
to compare different lamination solutions. The results shown in Fig.5.41 are normalized with
respect to the flutter speed, when θ is equal to 0o. As expected, the solution related to the first
scheme [θ/θ/θ/θ] is symmetric with respect to the minimum flutter speed, which occurs for
θ equal to 90o. The two maximum speed values are reached for θ equal to 50o and 130o. Al-
though the worst condition is the same as that of the previous configuration, the second scheme
([−θ/−θ/θ/θ]) provides the highest flutter speed for the considered cases, when θ is equal to
20o. Finally, regarding the last case [θ/0.1θ/2θ/10θ], maximum value (at θ = 150o) is lower
than those of previous examples but, interestingly, the minimum speed is the highest (at θ =
90o) with this configuration.
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Table 5.34 Material properties and dimensions of the composite box beam

Property Dimension

E11 206.8 [Gpa]
E22 5.17 [Gpa]
G23 2.55 [Gpa]
G31 2.55 [Gpa]
G12 3.10 [Gpa]
ν12 0.25
ρ 1528.5 [kg/m3]
c 0.5[m]
h c/15[m]
t c/150[m]
L 3.5[m]

Table 5.35 Flutter velocities [m/s] for the angle ply box beam, TE4.

0o 30o 60o 90o 120o 150o 180o

ST 95.462 125.88 109.30 96.492 115.08 129.61 97.07
TM 108.71 144.12 126.59 106.11 133.24 132.75 110.82

DLM 114.12 142.06 129.62 112.66 130.07 144.14 116.32
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5.5.2 Centrifugally stiffened beams

Isotropic rotating plate

The flutter conditions of an isotropic rotating plate are evaluated using different aerodynamic
approaches. The material properties are E = 74 GPa, ν=0.33 and ρ=2780 kg/m3 and, the geo-
metrical features are shown in Fig.5.42.

Figure 5.42 Geometrical features of the isotropic rotating plate.

Table 5.36 Flutter velocities [rad/s] for the isotropic rotating plate, TE3.

ĥ fF [Hz] ΩF [rad/s]

Steady - 8.14 14.52
Theodorsen - 5.28 18.71

Loewy
4.5 5.32 18.03
5.5 5.32 18.06
6.5 5.22 18.08

Table 5.36 shows the flutter conditions predicted using both steady and unsteady aerodynamic
theories. As far as Loewy’s model is concerned, three different spacing factors are considered
in order to highlight its effects on the aeroelastic response of the blade. First of all, it is observed
that the steady theory predicts a lower value of the flutter speed and a higher frequency with
respect to the unsteady approaches. Secondly, despite different spacing factors, the unsteady
models leads to very similar results both in terms of frequency and speed.

Rotating multi-section blade: NACA 0012

To demonstrate the capabilities of the refined CUF beam elements, a realistic helicopter blade
is here considered. The airfoil is a NACA 0012 and chord and length of the structure are 0.3454
and 5.186 m, respectively. Figure 5.43 shows the blade profile that is constituted by different
sections whit the materials listed in Tab.5.37. The structure is cantilevered and it is modelled
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with 7 4-node beams. Several problem parameters are evaluated including the lamination angle
of the skin ply, the aerodynamic theories and the order of TE models. Firstly, for the ply angle
θ equal to zero, Fig.5.44 shows the natural frequencies as a function of the rotational speed by
adopting different displacement theories.

Figure 5.43 Airfoil NACA 0012. The dimensions are in [mm].

Table 5.37 Material properties of airfoil NACA 0012. Elastic moduli in [GPa] and densities in [kg/m3].

Material E11 E11 E11 G12 G31 G23 ν12 ν31 ν23 ρ

1 139.0 11.0 11.0 6.05 6.05 3.78 0.313 0.313 0.313 1578
2 35.756 15.427 15.427 3.902 3.902 3.902 0.27 0.27 0.27 1826.9
3 1.446 - - - - - 0.49 - - 13683.
4 0.0827 - - - - - 0.2 - - 190.99
5 0.03105 - - - - - 0.45 - - 95.48

−: the material is isotropic.

Despite slight differences in the computation of the torsional frequencies (4th and 6th), the TE3
model ensures acceptable accuracy with a very low number of degrees of freedom. On the other
hand, since the choice of the stacking sequence can determine dramatic changes in the dynamic
response of rotating structures, Fig.5.45 shows the frequency variations with the rotating speed
for a number of lamination angles.
In Figs.5.44 and 5.45, it is possible to note at different speed values, points at which the fre-
quency branches suddenly veer. The "veering" phenomenum determines a temporary cou-
pling of the involved modal shapes that can, in unlucky cases, affect the stability of the rotating
structure. In order to observe the evolutions of modes, the Modal Assurance Criterion (MAC) is
here exploited. The MAC number is defined as a scalar representing the degree of consistency
between two different modal vectors. The MAC takes on values from zero (representing no
consistent correspondence) to one (representing a consistent correspondence) and it is defined
as

MACij =
|{φAi

}T {φAj
}|2

{φAi
}T {φAi

}{φAj
}{φAj

}T (5.10)

where {φAi
} and {φAj

} are the modal vector {φA} at ith and jth speed. Figure 5.46 shows the
MAC for speed values close to the "veering" point at approximately 35 [rad/s]. It is noteworthy
that, after a phase where modal shapes differ from the original ones, they reappear simply
interchanged as after a crossing. This changing can slowly happen increasing, therefore, the
speed range where the deformation modes are coupled.
The flutter analyses are carried out by using the aerodynamic models proposed in Sec.4.2. As-
suming that the four-blade rotor is operating at a thrust coefficient CT = 0.014, the correspond-
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Figure 5.44 Frequency vs rotational speed: ’-’ TE3, ’–’ TE4, ’· · · ’ TE5. θ = 0

ing values of inflow ratio ’λ0’ and spacing factors ’ĥ’ are 0.084 and 3. Table 5.38 shows the
flutter conditions as a function of the lamination angle. The used displacement theories are
TE3 and TE4 expansions. It is noteworthy that, in this case, the two unsteady theories lead
to extremely different results when the angle is -15 and -30. According to Loewy’s model, the
lift deficiency function behaves as in Fig.5.47, where for the first reduced frequency shown in
the box, the real part is almost equal to 1 while the imaginary is almost null. This fact means
that the oscillatory lift excites the first deformation mode at each rotation causing, at a certain
velocity, the instability. Clearly, this result is strongly affect by the choice of the spacing factor
that represents, therefore, a crucial parameter.

Table 5.38 Flutter velocities [rad/s] and frequencies [Hz] for the NACA-0012.

θ

[-45] [-30] [-15] [0] [15] [30] [45]

Steady
TE3

VF 44.44 52.55 44.89 22.24 24.39 32.24 32.04
fF 16.03 16.15 13.10 13.50 17.76 21.05 19.14

TE4
VF 39.64 49.24 42.92 22.25 23.48 30.64 30.32
fF 13.69 15.28 12.64 13.00 17.09 19.96 18.30

Theodorsen
TE3

VF 46.72 54.31 47.72 30.28 27.47 36.40 36.80
fF 15.26 16.07 13.48 12.07 16.17 19.38 18.00

TE4
VF 40.34 51.41 45.78 29.18 26.43 34.62 34.82
fF 13.05 15.27 13.00 11.59 15.59 18.39 17.21

Loewy
TE3

VF 45.14 26.40 11.00 29.48 25.88 34.70 36.31
fF 14.95 0.283 0.151 11.57 14.36 17.64 17.16

TE4
VF 39.69 25.03 10.80 26.57 25.03 33.08 34.33
fF 13.00 0.270 0.150 9.871 13.94 16.80 16.38



114 CHAPTER 5

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

f [
H

z]

Ω [rad/s]

(a) θ = 15

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

f [
H

z]

Ω [rad/s]

(b) θ = 30

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

f [
H

z]

Ω [rad/s]

(c) θ = 45

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

f [
H

z]

Ω [rad/s]

(d) θ = −45

Figure 5.45 Frequency vs rotational speed for various lamination schemes. TE3.
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Figure 5.46 MAC values at different rotational speeds for the graph 5.45-b.
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Figure 5.47 Real and imaginary parts of Loewy’s deficiency function vs reduced frequency for θ= -15. In the box,
the values for the first reduced frequency.
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5.6 Rotating plates in a supersonic flow

In this section, the dynamics of a rotating cantilevered plate in a supersonic flow is studied.
A number of analysis is carried out considering beams with different values of length-to-
thickness (L/h) and length-to-chord (L/c) ratios. The results are obtained for isotropic struc-
tures with Young’s modulus E=70 GPa, Poisson’s ratio ν=0.3 and density ρ=2700 kg/m3. The
air density ρa and the speed of sound Vs are assumed to be 24.08 kg/m3 and 344 m/s and,
in order to fulfill the condition of supersonic flow on the whole blade surface, the rotational
minimum speed (Ωmin) must be 1.8Vsound

rh
. To compare the results presented against results in

(Farhadi and Hosseini-Hashemi, 2011), where the piston theory is combined with a non-linear
Mindlin first-order shear deformation plate theory. For a thickness-to-length ratio equal to

0.015 and 0.01, Tables 5.39 and 5.40 shows the frequency parameters (ω̄ = ω L2
√

12ρ (1−ν2)
E c h

) for
length-to-width ratio equal to 3 and 2.5, respectively.

Table 5.39 Non-dimensional out-of-plane frequencies for rotating isotropic plate (h/L = 0.015, rh/L =1) at Ωmin.

L/c Theory ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8

Free rotation

3

TE3 42.9 48.1 103.4 125.5 175.5 211.0 243.7 266.0
TE4 42.9 48.0 103.4 125.2 175.3 210.1 210.3 261.7
TE5 42.9 48.0 103.4 125.0 175.3 209.3 209.7 258.9

2D (2011) 41.7 52.8 100.0 125.0 172.2 208.3 211.1 255.6

2.5

TE3 42.9 46.7 103.4 119.9 170.0 180.8 201.9 229.0
TE4 42.9 46.6 103.4 119.6 150.5 176.6 201.0 214.3
TE5 42.9 46.6 103.4 119.4 149.4 176.6 200.6 208.1

2D (2011) 41.7 55.6 100.0 119.4 150.0 172.2 200.0 211.1

Rotation in air medium flow

3

TE3 43.8 46.9 103.2 125.4 175.4 211.1 243.7 265.9
TE4 43.8 46.8 103.2 125.2 175.1 209.8 210.8 261.6
TE5 43.8 46.8 103.2 125.0 175.1 209.0 210.2 258.8

2D (2011) 41.7 52.8 100.0 125.0 172.2 208.3 216.7 256.1

2.5

TE3 44.5 44.8 103.2 119.9 169.9 180.7 202.0 229.0
TE4 44.5 44.8 103.2 119.6 150.6 176.4 201.3 214.3
TE5 44.5 44.8 103.2 119.5 149.7 176.3 200.8 208.1

2D (2011) 41.7 52.8 100.0 119.4 152.8 172.2 200.0 208.3

Discrepancies are recorded in the computation of the second frequency ’ω̄2’ that is, for all stud-
ied configurations, related to the torsional mode. Moreover, for h/L equal to 0.01, the 1D
theories predict frequency lockings between the first and second values for both L/c ratios and
between the third and fourth for the lowest L/c value. These discrepancies are due to the fact
that the reference solution was obtained by a plate theory, which takes into account non-linear
strain terms that can play an important role especially for highly deformable plates. However,
the comparisons confirms that the 1D-CUF elements provide quite accurate descriptions of the
aeroelastic behavior of thin structures rotating in a flow.

Similarly to the subsonic case, the flutter instability occurs when a mode is self-excited that is,
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Table 5.40 Non-dimensional out-of-plane frequencies for rotating isotropic plate (h/L = 0.01, rh/L =1) at Ωmin.

L/c Theory ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6 ω̄7 ω̄8

Free rotation

3

TE3 63.9 67.7 152.4 169.8 244.8 257.6 280.7 319.2
TE4 63.9 67.6 152.4 169.5 216.2 251.8 279.8 297.9
TE5 63.9 67.6 152.4 169.4 214.7 251.8 279.4 289.5

2D (2011) 63.3 75.9 151.9 170.9 221.5 246.8 275.3 288.0

2.5

TE3 63.9 66.6 152.2 165.2 181.8 250.3 260.5 272.8
TE4 63.9 66.6 151.8 160.3 164.9 246.0 253.6 271.8
TE5 63.9 66.6 151.6 158.7 164.8 238.9 252.3 271.5

2D (2011) 63.3 76.6 151.3 164.6 170.9 240.5 250.6 269.0

Rotation in air medium flow

3

TE3 65.3 65.5 151.7 169.7 244.3 256.9 281.6 319.0
TE4 65.3 65.6 151.7 169.7 217.0 250.6 281.2 297.7
TE5 65.4 65.7 151.8 169.8 216.2 250.6 280.9 289.5

2D (2011) 63.3 69.6 145.6 170.9 224.7 237.3 278.5 291.1

2.5

TE3 64.8 65.0 152.1 163.6 182.7 248.6 261.2 273.3
TE4 65.0 65.2 154.7 154.8 168.9 244.7 253.5 273.3
TE5 65.1 65.3 154.5 154.6 169.2 238.7 251.4 273.3

2D (2011) 63.3 75.9 145.6 167.7 183.5 237.3 246.8 272.2

the real part of the related eigenvalue becomes positive. The instability condition depends on
several parameters such as structure dimensions and material properties. In Figs.5.48 and 5.49,
frequency and damping values of isotropic plates, with length and chord equal to 0.3 and 0.1
m, are shown as functions of the Mach number at the structure tip (2×L) for ’h/L’ equal to
0.01 and 0.005, respectively. For both cases, TE4, TE5 and TE6 displacement theories are used.
Looking at the frequency plots, veering, crossing as well as locking phenomena are clearly
recognizable for both structures. When the blocking phenomenum occurs, the real parts of
the involved eigenvalues diverge and, if one of them becomes positive, the system is unstable.
Results reveal that the thinner plate becomes unstable when the maximum velocity reaches a
Mach number equal to 5.3, while in contrast, the thicker plate remains stable for all considered
speeds. It should be noted that the TE4 expansion does not predict any instability region for
the thinner plate.
In the conclusive analyses, we consider the same thinner plate of the previous example (’h/L’=0.005)
constituted by two layers of orthotropic materials. The material properties are E11=98 GPa,
E22=E33=7.90 GPa, ν12=ν31=ν23= 0.28, G12=G31=G23= 5.60 GPa, and ρ= 1520 kg/m3. The lam-
ination sequence is anti-symmetric with respect to the mean plane of the plate [θ/-θ]. Figure
5.50 shows the evolutions of frequency and damping values with the rotational speed. The
analyses are carried out using the Taylor-like expansion of sixth-order.
It should be noted that damping values relating to the first 15 mode shapes are negative in the
whole speed range considered only for θ=75o and 90o. This fact demonstrates that a correct
choice of the lamination sequence can be an effective way to avoid flutter instabilities, espe-
cially when high deformable structures must be used.
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Figure 5.48 Frequency and damping values of an isotropic plate rotating in compressed air with h/L equal to 0.01.
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Figure 5.49 Frequency and damping values of an isotropic plate rotating in compressed air with h/L equal to
0.005.
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Figure 5.50 Frequency and damping values of a laminated plate rotating in compressed air with h/L equal to
0.005. (TE6)





Chapter 6

Conclusions

This thesis aims to present a simple tool for the aeroelastic analysis of rotating structures. Both
steady and unsteady aerodynamic theories are coupled with refined beam theories obtained
through Carrera Unified Formulation. The enhanced capabilities of 1D CUF theories allowed
to deal with problems that usually require sophisticated solutions with a low number of de-
grees of freedom.

6.1 Outline and contribution to the literature

The FE and CUF approximations allow the development of several refined beam finite ele-
ments. Besides Taylor- and Lagrange-like expansions (TE and LE), the displacement fields
are obtained by using several functions including trigonometric, exponential, hyperbolic and
zig-zag terms. In order to verify the effectiveness of the finite elements, linear static and free-
vibration analyses have been carried out on structures made of composite as well as function-
ally graded material. In the light of the obtained results, it is clear that

◦ although the classical beam theories provide acceptable results in terms of displacements
and longitudinal stress, they do not describe the correct shear stress distribution, espe-
cially when shear effects become relevant;

◦ the use of refined 1D models is recommended in order to achieve acceptable results when
thick structures are considered;

◦ the zig-zag function significantly improves the solution when thick laminated and sand-
wich beams are studied;

◦ 1D CUF beam elements provide results very close to shell and solid finite element solu-
tions;

◦ the accuracy of the solution strictly depends on the problem characteristics, therefore the
possibility to develop an (at least) infinite number of theories appears to be a remarkable
feature of the present formulation.

In the second part of this work we have focused on the study of rotors using CUF. The equations
of motion, derived through Hamilton’s Principle, include both Coriolis term and centrifugal
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contributions. The TE elements have been used to perform a number of free-vibration analyses
on spinning shafts and blades made of either isotropic or composite materials. Moreover, the
higher-order models have allowed evaluation of the dynamic behavior of highly deformable
spinning structures such as thin-walled cylinders. To sum up:

◦ regarding spinning shafts, classical beam theories provide accurate results when slender
and metallic structures are considered;

◦ since the bending-torsional coupling must be described in order to correctly predict the
occurrence of instabilities, the higher-order theories are recommended for the study of
shafts made of composite materials;

◦ the initial stress is essential when the wall thickness becomes thin, confirming that classi-
cal beam theories are suitable only to study compact cross-sections;

◦ refined beam models provide reliable results for thick laminated cylindrical shells;

◦ as for the centrifugally stiffened beams, the present formulation is able to describe both
chordwise and flapwise motions;

◦ 1D CUF elements leads to more accurate results than classical theories when laminated
and thin-walled blades are studied;

◦ since stretching and chordwise motions are coupled by Coriolis matrix, the non-linear
term ’uy,y’ introduces a stiffness contribution that can be important for the prediction of
divergences.

In the third section, aerodynamic theories have been developed and combined with the refined
beam theories. Theodorsen’s approach (from which the steady and quasi-steady theories can
be easily obtained) has been used to evaluate flutter conditions of various wing configurations
including straight and swept structures constituted by isotropic and composite materials. Due
to their wide use in the modelling of wings and blades, special attention has been given to
thin-walled laminated beams. Flutter speeds and frequencies have been compared with those
obtained with the DLM and, with solutions available in the literature, yielding the following
findings:

◦ since the flutter phenomenum involves a bending-torsion coupling, refined beam models
are needed to predict an accurate dynamic response of the structure;

◦ while the steady approach predicts too low flutter velocity values, the unsteady strip
theory generally yields results very close to the reference values;

◦ as expected, the lamination scheme and the sweep angle affect the dynamics of the struc-
tures to a great extent. As a consequence, a correct setting of these two parameters is
crucial for a the aeroelastic design.

The natural extension of Theodorsen’s model for the rotary-wing aeroelasticity, namely Loewy’s
theory, has been then embedded in CUF framework writing both structural and aerodynamic
matrices in terms of fundamental nuclei. The differences between classical aerodynamic theo-
ries for fixed wings and Loewy’s approach have been investigated by analysing metallic and
nonhomogeneous blades:
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◦ as expected, the steady approach leads to more conservative results than unsteady mod-
els in terms of flutter velocities;

◦ although different values of the spacing factor ’ĥ’ have been considered, Loewy’s theory
provides results very close to those obtained with Theodorsen’s approach for the metallic
blade;

◦ as expected, the stacking sequence strongly affects the aeroelastic response of blades;

◦ since the inclusion of the returning wave implies the possibility of single-degree-of-freedom
flutter in blade torsion, considerable discrepancies between Loewy’s and Theodorsen’s
theory are observed when the nonhomogeneous blade is considered;

◦ the spacing factor ’ĥ’ can affect the solution, therefore it is a crucial parameter for insta-
bility predictions.

Finally, the Piston Theory combined with the higher-order structural theories has been adopted
in aeroelastic analyses of plates rotating in compressed and supersonic flows. The effects of
aspect-ratios and lamination scheme have been evaluated and the results were reported in
terms of natural frequencies. In the light of these results, the following conclusions are drawn:

◦ refined CUF models strongly agree with the reference solutions (obtained with a non-
linear plate theory) for the moderately thick rotating plate;

◦ for the thinnest plate, slight discrepancies are observed in the computation of torsional
frequencies and, therefore, frequency blocking phenomena predicted at different rota-
tional speed;

◦ higher order theories are needed to correctly predict the instability conditions especially
when thin structures are considered;

◦ an adequate choice of the stacking sequence can avoid the occurrence of instabilities.

6.2 Future works

Within this work, Carrera Unified Formulation has shown excellent performance in the study
of the dynamics and the aeroelasticity of rotors, therefore paving the way for future research
that will include:

1. extension to nonlinear structural analysis (geometrical as well as material nonlinearities);

2. extension to multi-field problems in order to evaluate, for instance, the temperature ef-
fects on turbine blades;

3. development of cascade theory for turbine and compressor blades in subsonic and super-
sonic flows;

4. analysis of complex-shaped rotating structures (swept-tip blades, twisted blades etc.);

5. extension to more sophisticated aerodynamic theories (panel methods, CFD)
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In the following section, we present the coefficients of the transformed material matrix C̃ as a
function of stiffness material coefficients C and the two angles θ, β.
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Appendix B

For a cross-section made of non-homogeneous orthotropic material, the components of the
fundamental nucleus Kijτs are

Kxx = I
i,yj

l ⊳ Fτ C̃46Fs,z⊲ + I
i,yj

l ⊳ Fτ C̃26Fs,x⊲ + I
i,yj,y
l ⊳ Fτ C̃66Fs⊲ +

Iijl ⊳ Fτ,zC̃44Fs,z⊲ + Iijl ⊳ Fτ,zC̃24Fs,x⊲ + I
ij,y
l ⊳ Fτ,zC̃46Fs⊲ +

I
ij,y
l ⊳ Fτ,xC̃26Fs⊲ + Iijl ⊳ Fτ,xC̃24Fs,z⊲ + Iijl ⊳ Fτ,xC̃22Fs,x⊲

Kxy = I
i,yj

l ⊳ Fτ C̃66Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃56Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃36Fs⊲ +

Iijl ⊳ Fτ,xC̃26Fs,x⊲ + Iijl ⊳ Fτ,xC̃25Fs,z⊲ + Iijl ⊳ Fτ,zC̃46Fs,x⊲ +

Iijl ⊳ Fτ,zC̃45Fs,z⊲ + I
ij,y
l ⊳ Fτ,zC̃43Fs⊲ + I

ij,y
l ⊳ Fτ,xC̃23Fs⊲

Kxz = I
i,yj

l ⊳ Fτ C̃46Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃16Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃56Fs⊲ +

Iijl ⊳ Fτ,zC̃44Fs,x⊲ + Iijl ⊳ Fτ,zC̃14Fs,z⊲ + Iijl ⊳ Fτ,xC̃24Fs,x⊲ +

Iijl ⊳ Fτ,xC̃21Fs,z⊲ + I
ij,y
l ⊳ Fτ,zC̃45Fs⊲ + I

ij,y
l ⊳ Fτ,xC̃25Fs⊲

Kyx = I
ij,y
l ⊳ Fτ,xC̃66Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃56Fs⊲ + I

i,yj

l ⊳ Fτ C̃43Fs,z⊲ +

I
i,yj

l ⊳ Fτ C̃23Fs,x⊲ + I
i,yj,y
l ⊳ Fτ C̃36Fs⊲ + Iijl ⊳ Fτ,xC̃46Fs,x⊲ +

Iijl ⊳ Fτ,xC̃26Fs,x⊲ + Iijl ⊳ Fτ,zC̃45Fs,z⊲ + Iijl ⊳ Fτ,zC̃25Fs,x⊲

Kyy = Iijl ⊳ Fτ,xC̃66Fs,x⊲ + Iijl ⊳ Fτ,xC̃56Fs,z⊲ + Iijl ⊳ Fτ,zC̃56Fs,x⊲ +

Iijl ⊳ Fτ,zC̃55Fs,z⊲ + I
ij,y
l ⊳ Fτ,xC̃36Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃35Fs⊲ +

I
i,yj

l ⊳ Fτ C̃36Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃35Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃33Fs⊲

Kyz = Iijl ⊳ Fτ,xC̃46Fs,x⊲ + Iijl ⊳ Fτ,xC̃16Fs,z⊲ + Iijl ⊳ Fτ,zC̃45Fs,x⊲ +

Iijl ⊳ Fτ,zC̃15Fs,z⊲ + I
ij,y
l ⊳ Fτ,xC̃56Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃55Fs⊲ +

I
i,yj

l ⊳ Fτ C̃43Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃13Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃35Fs⊲

Kzx = I
i,yj

l ⊳ Fτ C̃45Fs,z⊲ + I
i,yj

l ⊳ Fτ C̃25Fs,x⊲ + I
i,yj,y
l ⊳ Fτ C̃56Fs⊲ +

Iijl ⊳ Fτ,xC̃44Fs,z⊲ + Iijl ⊳ Fτ,xC̃24Fs,x⊲ + Iijl ⊳ Fτ,zC̃21Fs,x⊲ +

Iijl ⊳ Fτ,zC̃14Fs,z⊲ + I
ij,y
l ⊳ Fτ,xC̃46Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃16Fs⊲

Kzy = I
i,yj

l ⊳ Fτ C̃56Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃55Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃35Fs⊲ +

Iijl ⊳ Fτ,zC̃16Fs,z⊲ + Iijl ⊳ Fτ,zC̃15Fs,z⊲ + Iijl ⊳ Fτ,xC̃46Fs,x⊲ +

Iijl ⊳ Fτ,xC̃45Fs,z⊲ + I
ij,y
l ⊳ Fτ,xC̃43Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃13Fs⊲

Kzz = I
i,yj

l ⊳ Fτ C̃45Fs,x⊲ + I
i,yj

l ⊳ Fτ C̃15Fs,z⊲ + I
i,yj,y
l ⊳ Fτ C̃55Fs⊲ +

Iijl ⊳ Fτ,xC̃44Fs,x⊲ + Iijl ⊳ Fτ,xC̃14Fs,z⊲ + Iijl ⊳ Fτ,zC̃14Fs,x⊲ +

Iijl ⊳ Fτ,zC̃11Fs,z⊲ + I
ij,y
l ⊳ Fτ,xC̃45Fs⊲ + I

ij,y
l ⊳ Fτ,zC̃15Fs⊲



128 CHAPTER



Bibliography

Albano, E., Rodden, W., 1969. A doublet-lattice method for calculating lift distributions on
oscillating surfaces in subsonic flows. AIAA Journal 7, 279–285.

Ballhause, D., D’Ottavio, M., Kröplin, B., Carrera, E., 2004. A unified formulation to assess
multilayered theories for piezoelectric plates. Computers and Structures 83, 1217–1235.

Banerjee, J., 2000. Free vibration of centrifugally stiffened uniform and tapered beams using the
dynamic stiffness method. Journal of Sound and Vibration 233, 857–875.

Banerjee, J., 2001. Dynamic stiffness formulation and free vibration analysis of centrifugally
stiffened timoshenko beams. Journal of Sound and Vibration 247, 97–115.

Banerjee, J., 2003. A simplified method for the free vibration and flutter analysis of bridge decks.
Journal of Sound and Vibration 260, 829–845.

Banerjee, J., Cheung, C., Morishima, R., Perera, M., Njuguna, J., 2007. Free vibration of a three-
layered sandwich beam using the dynamic stiffness method and experiment. International
Journal of Solids and Structures 44, 7543–7563.

Banerjee, J., Su, H., 2004. Development of a dynamic stiffness matrix for free vibration analysis
of spinning beams. Computers and Structures 82, 2189–2197.

Banerjee, J., Su, H., Jackson, D., 2006. Free vibration of rotating tapered beams using the dy-
namic stiffness method. Journal of Sound and Vibration 298, 1034–1054.

Bauchau, O., 1981. Design, manufacturing and testing of high speed rotating graphite/epoxy
shaftsPhD Thesis, Department of Aeronautics and Astronautics, MIT.

Bauer, H., 1980. Vibration of a rotating uniform beam, part 1: Orientation in the axis of rotation.
Journal of Sound and Vibration 72, 177–189.

Bennet, R., Edwards, J., 1998. An overview of recent developments in computational aeroelas-
ticity. AIAA Paper-98-2421.

Bert, C., Kim, C., 1992. The effect of bending-twisting coupling on the critical speed of a drive
shaftPresented at 6th Japan-U.S. Conference on Composite materials, Orlando, FL.

Bert, C., Kim, C., 1995. Whirling of composite-material driveshafts including bending-twisting
coupling and transverse shear deformation. Journal of Vibration and Acoustics 17, 17–21.

Bielawa, R., 1992. Rotary wing structural dynamics and aeroelasticity. AIAA.

129



130 CHAPTER

Bir, G., Chopra, I., 1994. Aeromechanical stability of rotorcraft with advanced geometry blades.
Mathl. Comput. Modelling 19, 159–191.

Bisplinghoff, R., Ashley, H., Halfman, R., 1996. Aeroelasticity. Dover Publications, INC.

Boukhalfa, A., 2011. Dynamic analysis of a spinning laminated composite-material shaft using
the hp- version of the finite element method. Advances in Vibration Analysis Research, 161–
186.

Brischetto, S., Carrera, E., 2010. Advanced mixed theories for bending analysis of functionally
graded plates. Computers and Structures 88, 1474–1483.

Carrera, E., 2002. Theories and finite elements for multilayered, anisotropic, composite plates
and shells. Archives of Computational Methods in Engineering 9.

Carrera, E., 2003. Theories and finite elements for multilayered plates and shells: a unified com-
pact formulation with numerical assessment and benchmarking. Archives of Computational
Methods in Engineering 10.

Carrera, E., 2004. Assessment of theories for free vibration analysis of homogeneous and mul-
tilayered plates. Shock and Vibration 3–4, 261–270.

Carrera, E., Boscolo, M., Robaldo, A., 2007. Hierarchic multilayered plate elements for coupled
multifield problems of piezoelectric adaptive structures: Formulation and numerical assess-
ment. Archives of Computational Methods in Engineering 14, 383–430.

Carrera, E., Cinefra, M., Petrolo, M., Zappino, E., 2014a. Finite Element Analysis of Structures
through Unified Formulation. Wiley.

Carrera, E., Cinefra, M., Petrolo, M., Zappino, E., 2014b. Finite Element Analysis of Structures
through Unified Formulation. Wiley.

Carrera, E., Filippi, M., 2014. Variable kinematic one-dimensional finite elements for the
analysis of rotors made of composite materials. ASME J Gas Turb Pwr 136, 092501, dOI:
10.1115/1.4027192.

Carrera, E., Filippi, M., Zappino, E., 2013a. Analysis of rotor dynamic by one-dimensional
variable kinematic theories. Journal of engineering for gas turbines and power 135, 092501,
dOI: 10.1115/1.4024381.

Carrera, E., Filippi, M., Zappino, E., 2013b. Free vibration analysis of laminated beam by poly-
nomial, trigonometric, exponential and zig-zag theories. Journal of Composite Materials.

Carrera, E., Filippi, M., Zappino, E., 2013c. Free vibration analysis of rotating com-
posite blades via carrera unified formulation. Composite Structures 106, 317–325, dOI:
10.1016/j.compstruct.2013.05.055.

Carrera, E., Filippi, M., Zappino, E., 2013d. Laminated beam analysis by polynomial, trigono-
metric, exponential and zig-zag theories. European Journal of Mechanics - A/Solids 41, 58–
69, dOI: 10.1016/j.euromechsol.2013.02.006.



BIBLIOGRAPHY 131

Carrera, E., Giunta, G., 2008. Hierarchical models for failure analysis of plates bent by dis-
tributed and localized transverse loadings. Journal of Zhejiang University. Science A 9, 600–
613.

Carrera, E., Giunta, G., 2009. Hierarchical evaluation of failure parameters in composite plates.
AIAA Journal 47, 692–702.

Carrera, E., Giunta, G., 2010. Refined beam theories based on a unified formulation. Interna-
tional Journal of Applied Mechanics 2, 117–143.

Carrera, E., Giunta, G., Nali, P., Petrolo, M., 2010a. Refined beam elements with arbitrary cross-
section geometries. Computers and Structures 88.

Carrera, E., Giunta, G., Nali, P., Petrolo, M., 2010b. Refined beam elements with arbitrary cross-
section geometries. Computers and Structures 88.

Carrera, E., Giunta, G., Petrolo, M., 2011a. Beam Structures. Classical and Advanced Theories.
Wiley.

Carrera, E., Nali, P., Brischetto, S., 2008. Variational statements and computational models for
multifiled problems and multilayered structures. Mechanics of Advanced Materials and Strc-
tures 15, 182–198.

Carrera, E., Petrolo, M., 2011a. On the effectiveness of higher-order terms in refined beam the-
ories. Journal of Applied Mechanics 78.

Carrera, E., Petrolo, M., 2011b. Refined beam elements with only displacement variables and
plate/shell capabilities. MeccanicaDOI: 10.1007/s11012-011-9466-5.

Carrera, E., Petrolo, M., 2011c. Refined one-dimensional formulations for laminated structure
analysis. AIAA JournalDoi: 10.2514/1.J051219.

Carrera, E., Petrolo, M., Nali, P., 2011b. Unified formulation applied to free vibrations finite
element analysis of beams with arbitrary section. Shock and Vibrations 18.

Carrera, E., Petrolo, M., Varello, A., 2012a. Advanced beam formulations for free vibration
analysis of conventional and joined wings. Journal of Aerospace Engineering 25.

Carrera, E., Petrolo, M., Wenzel, C., Giunta, G., Belouettar, S., Sept. 2009. Higher order beam
finite elements with only displacement degrees of freedom, 1–11XIX Congresso AIMETA,
Ancona (IT).

Carrera, E., Petrolo, M., Zappino, E., 2012b. Performance of cuf approach to analyze the struc-
tural behavior of slender bodies. Journal of Structural Engineering 138, 285–298.

Carrera, E., Varello, A., Demasi, L., 2013e. A refined structural model for static aeroelastic re-
sponse and divergence of metallic and composite wings. CEAS Aeronautical Journal 4.

Carrera, E., Zappino, E., 2014a. Aeroelastic analysis of pinched panels in supersonic changing
with altitudine. Journal of Spacecraft and Rockets 51.

Carrera, E., Zappino, E., 2014b. Aeroelastic analysis of pinched panels in supersonic flow
changing with altitude. Journal of Spacecraft and Rockets 51.



132 CHAPTER

Carrera, E., Zappino, E., Filippi, M., 2013f. Free vibration analysis of thin–walled cylinders
reinforced with longitudinal and transversal stiffeners. Journal of Vibration and Acoustics
135.
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