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Aerospace Department, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

This chapter overviews classical and advanced theories for laminated plates
and shell structures. Findings from existing historical reviews are used to
confirm that the advanced theories can be grouped and referred to as:
Lekhnitskii multilayered theories, Ambartsumian multilayered theories, and
Reissner multilayered theories. The unified formulation proposed by the first
author, which is known as CUF (Carrera’s unified formulation), is used to make
numerical assessments of various laminated plate/shell theories. The chapter
ends by giving details of a recent reliable finite element formulation for
laminated shell analysis. It is embedded in the CUF framework and it leads
to the classical, zig-zag, and layer-wise models as particular cases. Numerical
mechanisms such as shear and membrane locking are contrasted by developing
an appropriate choice of shape functions and mixed assumed shear strain
techniques.

4.1 Introduction

Two–dimensional (2D) modeling of multilayered plates and shells
requires appropriate theories. The discontinuity of physical/mechanical
properties in the thickness direction makes theories that were origi-
nally developed for one-layered structures inadequate, such as the
Cauchy–Poisson–Kirchhoff–Love thin plate/shell theories [1–4], or the
Reissner and Mindlin [5, 6] first-order shear deformation theory (FSDT)
as well as higher-order models such as that by Hildebrand, Reissner,
and Thomas [7]. These theories are in fact not able to reproduce
piecewise continuous displacement and transverse stress fields in the
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Fig. 4.1. C0
z -requirements. Single-layered and three-layered structures.

thickness direction, which are usually experienced by multilayered
structures. These two fields are often described in the literature as zig-
zag effects and interlaminar continuity, respectively (see also the three-
dimensional solutions reported by Pagano [8]). In [9] these two effects have
been summarized using the acronym C0

z -requirements, that is displacements
and transverse stresses must be C0-continuous functions in the z-thickness
directions. A qualitative comparison of displacement and stress fields in
a one–layered and a multilayered structure are depicted in Fig. 4.1. This
picture clearly shows that theories designed for one-layer structures are
inappropriate to analyze multilayered ones.

A number of refinements of classical models as well as theories designed
for multilayered structures have been proposed in the literature over the
last four decades. Due to the form of displacement fields (see Fig. 4.1),
the latter are often referred to as “zig-zag” theories. For a complete review
of this topic, readers who are interested can refer to the many available
survey articles on beams, plates, and shells. Among these, excellent reviews
are quoted in the articles by Ambartsumian [10], Librescu and Reddy
[11], Grigolyuk and Kulikov [12], Kapania and Raciti [13], Kapania [14],
Noor and co-authors [15–17], Reddy and Robbins [18], Carrera [19], as well
as in the books by Librescu [20] and Reddy [21]. These articles review
theories that deal with layer-wise models (LWMs) and equivalent single-
layer models (ESLMs). Following Reddy [21], it is intended that the number
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of displacement variables is kept independent of the number of constitutive
layers in the ESLM, while the same variables are independent in each layer
for LWM cases.

Although these review works are excellent, in the authors’ opinion,
there still exists the need for a historical review with the aim of giving clear
answers to the following questions:

(1) Who first presented a zig-zag theory for a multilayered structure?
(2) How many different and independent ESL zig-zag theories have been

proposed in open literature?
(3) Who first proposed the theories for question 2?
(4) Are the original works well recognized and mentioned correctly in

subsequent articles?
(5) What are the main differences among the available approaches to

multilayered structures?

The answers to these five points could be extremely useful to analysts
of layered structures. Furthermore, it will give an insight into early and,
equally very interesting, ideas and methods such as those by Lekhnitskii
[22], which could be extended and applied to further problems. In particular,
answers to questions 1 and 3 could establish a sort of historical justice,
therefore permitting us to give to “Caesar what belongs to Caesar and to
God what belongs to God.”

This chapter is therefore a historical review of “zig-zag” theories, which
can describe what have previously been called C0

z -requirements, in view of
questions 1–5. These topics have already been documented in the historical
note by the first author [23]. The findings in that paper are reconsidered in
the first part of this chapter.

The present chapter considers mostly ESLMs. For the sake of
completeness, a few comments on layer-wise cases are given in a separate
section. A further limitation of the present chapter is that it is restricted
to axiomatic type-approaches. The three multilayered theories discussed
introduce initial assumptions: stress function forms were assumed by
Lekhnitskii, transverse shear stress fields were assumed by Ambartsumian,
while both displacements and transverse shear stresses were assumed in the
framework of the mixed theorem proposed by Reissner. Therefore, those
works which are based on asymptotic expansion such as those in [24–26]
have not been discussed in the present chapter.
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The latter part of this chapter considers the development of a refined
shell finite element formulation, which is based on Carrera’s unified
formulation (CUF) [27, 28].

The most common mathematical models used to describe shell
structures may be classified into two classes according to their different
physical assumptions. The Koiter model [29] is based on the Kirchhoff
hypothesis. The Naghdi model [30] is based on the Reissner–Mindlin
assumptions, which take into account transverse shear deformation. It is
known that when a finite element method is used to discretize a physical
model, numerical locking may arise from hidden constraints that are
not well represented in the finite element approximation. In the Naghdi
model both transverse shear and membrane constraints appear as the shell
thickness becomes very small, thus locking may arise. The most common
approaches proposed to overcome the locking phenomenon are the standard
displacement formulation with higher-order elements [31, 32] or techniques
of reduced-selective integration [33, 34]. But these introduce other numerical
problems.

With reference to works by Bathe and others [35–37], the present
authors have employed the mixed interpolation of tensorial components
(MITC) method, coupled to CUF, to overcome the locking phenomenon.
This method has been applied to both ESL and LW variable kinematic
models contained in CUF in order to analyze multilayered structures. Nine-
node cylindrical shell elements have been considered. The performance of
the new element has been tested by solving benchmark problems involving
very thin shells as well as multilayered shells. The results show that the
element has good convergence and robustness when the thicknesses become
very small. In particular, the study of multilayered structures demonstrates
that the zig-zag and LW models provide more accurate solutions than the
simple ESL models.

4.2 Who First Proposed a Zig-Zag Theory?

To the best of the authors’ knowledge, Lekhnitskii should be considered
as the first contributor to the theory for multilayered structures. In [22],
in fact, Lekhnitskii proposed a splendid method able to describe zig-zag
effects (for both in-plane and through-the-thickness displacements) and
interlaminar continuous transverse stresses. This is proved by Fig. 4.2,
taken from Lekhnitskii’s pioneering work [22], which shows an interlaminar
continuous transverse shear stress field (τ1 and τ2 are shear stresses in
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Fig. 4.2. C0
z -form of a transverse shear stress in a two-layered structure.

the layers 1 and 2, respectively) with discontinuous derivatives at the layer
interface (the first author thanks Prof Shifrin, who provided the original
article in Russian, and D. Carrera for providing an Italian translation of
the same article). In other words, the C0

z –requirements of Fig. 4.1 were
entirely accounted for by Lekhnitskii [22].

The authors believe it would be of relevant interest to quote the original
derivations made by Lekhnitskii. It is, in fact, difficult to obtain the original
article by Lekhnitskii, which has no English translation. Furthermore, the
theory proposed by Lekhnitskii is very interesting and the method used
could be a starting point for future developments. The following detailed
derivation is therefore taken directly from Lekhnitskii’s original paper,
written in Russian. A few changes in notation are made. A briefer treatment
can be found in the English translation of the book ([38]; Section 18 of
Chapter 3, p. 74).

This section closes with a few remarks on the theory proposed by
Lekhnitskii:

(1) Lekhnitskii’s theory describes the zig-zag form of both longitudinal and
through-the-thickness displacements, in particular:

(a) The longitudinal displacements uk have a cubic order in the
z–thickness direction.

(b) The through-the-thickness displacement wk varies according to a
parabolic order in z.

(2) Lekhnitskii’s theory gives the interlaminar continuous transverse
stresses σzz and σxz.
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(3) The stresses obtained by Lekhnitskii fulfill the 3D indefinite equilibrium
equations (this fundamental property is intrinsic in the used stress
function formulation).

(4) Stresses and displacements were obtained by employing:

(a) Compatibility conditions for stress functions.
(b) Strain–displacement relations.
(c) Compatibility conditions for displacements at the interface:

uk−1 = uk, wk−1 = wk, k = 2, Nl. (4.1)

(d) Homogeneous conditions at the bottom and top surfaces for the
transverse stresses:

σ1
zz = σNl

zz = 0, σ1
xz = σNl

xz = 0, for z = 0, h. (4.2)

(e) Interlaminar equilibrium for the transverse stresses:

σk−1
zz = σk

zz, σk−1
xz = σk

xz , k = 2, Nl. (4.3)

(5) No post-processing is used to recover transverse stresses.
(6) The thickness stress σzz are neglected. Nevertheless, the Poisson effects

on the thickness displacement wk are fully retained.
(7) Full retention of Koiter’s recommendation would require a different

assumption for the stress functions (the authors do not know any work
that does so).

Although Lekhnitskii’s theory was published in the mid-1930s and reported
in a short paragraph of the English edition of his book [38], it has been
systematically forgotten in the recent literature. An exception is the work
by Ren [39–41], which documented in the next paragraph.

4.3 The Lekhnitskii–Ren Theory

This is the first of the three discussed theories. It is named after the author
of the original work, Lekhnitskii and the author who first extended the work
to plates, Ren. Due to the original stress function formulation, the present
approach could also be referred to as a “stress approach.”

To the best of the authors’ knowledge, Ren is the only scientist who has
used Lekhnitskii’s work as described in the previous section. In two papers
[39, 40], Ren has, in fact, extended Lekhnitskii’s theory to orthotropic and
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anisotropic plates. Further applications to vibration and buckling were
made in a third paper written in collaboration with Owen [41]. These three
papers are the unique contributions known to the authors that have been
made under the framework of Lekhnitskii’s theory. As these three papers
have been published in journals that are easily available worldwide, a full
description of Ren’s extension of Lekhnitskii’s theory to plates has been,
therefore, omitted. Nevertheless, it is of interest to make a few comments
on Ren’s work in order to make explicit the stress and displacement
fields that were introduced by Ren to analyze the response of anisotropic
plates.

On the basis of the form of τk
xz obtained by Lekhnitskii, it appeared

reasonable to Ren, see [39], to assume the following distribution of
transverse shear stresses in a laminated plate, composed of Nl orthotropic
layers (x, y, and z are the coordinates of the reference system depicted in
Fig. 4.3):

σk
xz(x, y, z) = ξx(x, y)ak(z) + ηx(x, y)ck(z)

σk
yz(x, y, z) = ξy(x, y)bk(z) + ηy(x, y)gk(z).

(4.4)
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Fig. 4.3. Multilayered plate.
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Four independent function of x, y were introduced to describe the
transverse shear stresses. The layer constants are parabolic functions of
the thickness coordinate z. As in Lekhnitskii, the displacement fields are
obtained by integrating the strain–displacement relations.

In contrast to the work by Lekhnitskii, it is underlined that the
transverse strain εzz was discarded by Ren. This assumption contrasts
with Koiter’s recommendation already mentioned. The constants of
integration are determined by imposing compatibility conditions for the
displacements at the interface. The displacement field assumes the following
form:

uk(x, y, z) = u0(x, y) − w,x + ξx(x, y)Ak(z) + ηx(x, y)Ck(z)

vk(x, y, z) = v0(x, y) − w,y + ξy(x, y)Bk(z) + ηy(x, y)Gk(z)

w(x, y, z) = w0(x, y),

(4.5)

where Ak(z), Bk(z), Ck(z), and Gk(z) are obtained by integrating the
corresponding ak(z), bk(z), ck(z), and gk(z). That is, Eqs. (4.5) represent a
piecewise continuous displacement field in the thickness direction z, which
is cubic in each layer. An extension to generally anisotropic layers has been
provided by the same author in the article already mentioned [40].

The displacement model of Eqs. (4.5) can be used in the framework of
known variational statements, such as the principle of virtual displacements
(PVD) to formulate the governing equations for anisotropic plates as well
as finite element models. This was done in [39–41]. No shell applications of
the Lekhnitskii–Ren theory are known to the authors.

4.4 The Ambartsumian–Whitney–Rath–Das Theory

This is the second of the three discussed theories. Ambartsumian was
the author of the original work [42–45]; Whitney [46] both extended the
theory to anisotropic plates and introduced the theory to the scientific
community in the West; Rath and Das [47], extended Whitney’s work to
shell geometries.

The Ambartsumian–Whitney–Rath–Das (AWRD) approach has the
peculiarity of having the same number of unknown variables as first-
order shear deformation theory, i.e. three displacements and two rotations
(or shear strains). It was originated by Ambartsumian [42, 43] who
restricted the formulation to orthotropic layers. Here attention will focus
on the work by Whitney [46] who first applied and extended it to generally
anisotropic and symmetrical and asymmetrical plates. For simplicity, only
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symmetrical laminated plates are outlined. Details can be read in the above
mentioned articles and books. The transverse shear stresses are assumed
to be:

σk
xz(x, y, z) = [Qk

55f(z) + ak
55]φx(x, y) + [Qk

45f(z) + ak
45]φy(x, y)

σk
yz(x, y, z) = [Qk

45f(z) + ak
55]φx(x, y) + [Qk

44f(z) + ak
44]φy(x, y).

(4.6)

The Ambartsumian case can be obtained by putting Qk
45 = ak

45 =0.

f(z) is a function of the thickness coordinate which is assumed to be
different in the symmetrical and unsymmetrical laminate cases. A parabolic
form for f(z) has mostly been considered (an explicit formula for
unsymmetrical cases was given by Whitney). The layer constants ak

44, ak
45,

and ak
55 are determined by imposing the continuity conditions of transverse

shear stresses at the interface while top-bottom homogeneous conditions
are used to determine the form of f(z). Notice that the top-bottom
inhomogeneous conditions for transverse shear stresses were addressed
by Ambartsumian [42, 43], along with a method to compute transverse
normal stresses. These two facts have not been addressed in subsequent
work.

The transverse shear strains related to the assumed transverse shear
stress fields are:

γk
xz(x, y, z) = [f(z) + Sk

55a
k
55 + Sk

45a
k
45]φx(x, y) + [Sk

55a
k
45 + Sk

45a
k
44]φy(x, y)

γk
yz(x, y, z) = [Sk

44a
k
44 + Sk

45a
k
45]φx(x, y) + [f(z) + Sk

44a
k
44 + Sk

45a
k
55]φy(x, y),

(4.7)
in which the following compliances have been introduced:

Sk
55 =

Qk
55

D
, Sk

45 = −Qk
45

D
, Sk

44 =
Qk

44

D
, D = Qk

44Q
k
55 − (Qk

45)
2.

By assuming the transverse displacement is constant in the thickness
direction, i.e. εzz=0, on integrating the shear strains the displacement field
has the following form:

uk(x, y, z) = −zw,x + [J(z) + gk
1 (z)]φx(x, y) + gk

2 (z)φy(x, y)

vk(x, y, z) = −zw,y + [J(z) + gk
3 (z)]φy(x, y) + gk

4 (z)φx(x, y)

w(x, y, x) = w0(x, y, z),

(4.8)
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where

J(z) =
∫

f(z)dz

gk
1 (z) = [Sk

55a
k
55 + Sk

45a
k
45]z + dk

1

gk
2 (z) = [Sk

55a
k
55 + Sk

45a
k
45]z + dk

2

gk
3 (z) = [Sk

55a
k
55 + Sk

45a
k
45]z + dk

3

gk
4 (z) = [Sk

55a
k
55 + Sk

45a
k
45]z + dk

4 .

(4.9)

dk
1 , dk

2 , dk
3 and dk

4 are calculated by imposing the compatibility of the in-
plane displacement at each interface. Equations (4.8) are the starting point
for any analytical or computational study of multilayered plates.

An extension to doubly curved shells and a dynamic case of Whitney’s
work was made by Rath and Das [47].

Dozens of papers have been presented over recent decades that deal
with zig-zag effects and interlaminar continuous transverse shear stresses,
and which have stated that new theories were being proposed. The authors
believe that these articles should be considered as simplified cases of the
AWRD theory or the AWRD theory itself. Unfortunately, the original work
and authors (Ambartsumian, Whitney, Rath, and Das) are not mentioned,
or rarely cited, in the literature lists of this large number of articles. This
historical unfairness has been corrected in [23].

4.5 The Reissner–Murakami–Carrera Theory

A third approach to laminated structures originated in two papers by
Reissner [48, 49] in which a mixed variational equation, namely Reissner’s
mixed variational theorem (RMVT) was proposed. The displacement and
transverse stress variables are independently assumed in RMVT. This third
approach is the only one that was entirely developed in the West. Reissner
[48] proposed a mixed theorem and traced the manner in which it could
be developed; Murakami [50, 51], a student under Prof Reissner in San
Diego, was the first to develop a plate theory on the basis of RMVT
and introduced fundamental ideas on the application of RMVT in the
framework of ESLM; Carrera [9, 52] presented a systematic way to use
RMVT to develop plate and shell theories and introduced a weak form
of Hooke’s law (WFHL), which reduces mixed theories to classical models
with only displacement variables.

RMVT fulfills completely and a priori the C0
z -requirements by

assuming two independent fields for displacements u = {u, v, w}, and
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transverse stresses σn = {σxz, σyz , σzz} (bold letters denote arrays). Briefly,
RMVT puts 3D indefinite equilibrium equations (and related equilibrium
conditions at the boundary surfaces, which for brevity are not written here)
and compatibility equations for transverse strains in a variational form. The
3D equilibrium equations in the dynamic case are:

σij,j − ρ üi = pi i, j = 1, 2, 3, (4.10)

where ρ is the mass density and double dots denote acceleration while
(p1, p2, p3)=p are volume loadings. The compatibility conditions for
transverse stresses can be written by evaluating transverse strains in two
ways: using Hooke’s law εnH = {εxzH

, εyzH
, εzzH

} and using a geometrical
relation εnG = {εxzG , εyzG

, εzzG}; the subscript n denotes transverse/normal
components. Hence

εnH − εnG = 0. (4.11)

RMVT therefore states:∫
V

(δεp
T
GσpH + δεn

T
GσnM + δσn

T
M (εnG − εnH))dV

=
∫

V

ρδu ü dV + δLe. (4.12)

The superscript T signifies an array transposition and V denotes the
3D multilayered body volume while the subscript p denotes in-plane
components, respectively. Therefore, σp = {σxx, σyy, σxy} and εp =
{εxx, εyy, εxy}. The subscript H underlines that stresses are computed via
Hooke’s law. The variation of the internal work has been split into in-
plane and out-of-plane parts and involves the stress from Hooke’s law and
the strain from the geometrical relations (subscript G). δLe is the virtual
variation of the work done by the external layer-force p. Subscript M

underlines that transverse stresses are those of the assumed model.
The first application of RMVT was due to Murakami [50, 51], who

developed a refinement of Reissner–Mindlin type theories. First a zig-zag
form of the displacement field was introduced by means of two “zig-zag”
functions (Dx, Dy):

uk(x, y, z) = u0(x, y) + zφx(x, y) + ξk(−1)kDx(x, y)

vk(x, y, z) = v0(x, y) + zφy(x, y) + ξk(−1)kDy(x, y) (4.13)

w(x, y, z) = w0(x, y).
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Fig. 4.4. Geometrical meaning of Murakami’s zig-zag function. Linear case.

ξk=2zk/hk is a dimensionless layer coordinate (zk is the physical
coordinate of the kth layer whose thickness is hk). The exponent k changes
the sign of the zig-zag term in each layer. This trick reproduces the
discontinuity of the first derivative of the displacement variables in the
z-direction. The geometrical meaning of the zig-zag function is explained
in Figs. 4.4 and 4.5.

The transverse shear stresses fields were assumed to be parabolic by
Murakami [50] in each layer and interlaminar continuous according to the
following formula:

σk
xz(x, y, z) = σkt

xz(x, y)F0(zk) + F1(zk)k
x(x, y) + σkb

xz(x, y)F2(zk)

σk
yz(x, y, z) = σkt

yz(x, y)F0(zk) + F1(zk)Rk
y(x, y) + σkb

yz(x, y)F2(zk),

(4.14)

where σkt
xz(x, y), σkt

yz(x, y), σkb
xz(x, y), and σkb

yz(x, y) are the top and bottom
values of the transverse shear stresses, while Rk

x(x, y), and Rk
y(x, y) are

the layer stress resultants. The introduced layer thickness coordinate
polynomials hold:

F0 = −1/4 + ξk + 3ξ2
k, F1 =

3 − 12ξ2
k

2hk
, F2 = −1/4− ξk + 3ξ2

k.

The homogeneous and inhomogeneous boundary conditions at the top-
bottom plate surfaces can be linked to the introduced stress field.
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Fig. 4.5. Geometrical meaning of Murakami’s zig-zag function. Higher-degree case.

Toledano and Murakami [53] introduced transverse normal strain and
stress effects by using a third-order displacement field for both in-plane and
out-of-plane components and a fourth-order transverse stress field for both
shear and normal components. This paper is the first paper in the ESLM
framework in which Koiter’s recommendation is retained.

A generalization of RMVT to plate/shell theories has been provided
by Carrera [28,54–60]. The displacements and transverse stress components
were assumed as follows:

uk = Ftu
k
t + Fbu

k
b + Fru

k
r = Fτuk

τ τ = t, b, r

r = 2, 3, . . . , N

σk
nM = Ftσ

k
nt + Fbσ

k
nb + Frσ

k
nr = Fτσk

nτ k = 1, 2, . . . , Nl.

(4.15)

The subscripts t and b denote values for the top and bottom surface layer,
respectively. These two terms consist of the linear part of the expansion.
The thickness functions Fτ (ξk) can now be defined at the kth layer level:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2,

r = 2, 3, . . . , N (4.16)

in which Pj = Pj(ξk) is the jth order Legendre polynomial defined in the
ξk domain: −1 ≤ ξk ≤ 1. For instance, the first five Legendre polynomials
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are:

P0 = 1, P1 = ξk, P2 = (3ξ2
k − 1)/2, P3 =

5ξ3
k

2
− 3ξk

2
,

P4 =
35ξ4

k

8
− 15ξ2

k

4
+

3
8
.

The chosen functions have the following properties:

ξk =

{
1 when Ft = 1; Fb = 0; Fr = 0

−1 when Ft = 0; Fb = 1; Fr = 0.
(4.17)

The top and bottom values have been used as unknown variables. Such a
choice makes the model particularly suitable, in view of the fulfillment of
the C0

z -requirements. The interlaminar transverse shear and normal stress
continuity can therefore be linked by simply writing:

σk
nt = σk+1

nb , k = 1, Nl − 1. (4.18)

In those cases in which the top/bottom plate/shell stress values are
prescribed (zero or imposed values), the following additional equilibrium
conditions must be accounted for:

σ1
nb = σ̄nb, σNl

nt = σ̄nt, (4.19)

where the over-bar denotes the imposed values for the plate boundary
surfaces.

Examples of the application of RMVT to laminated plates in the
equivalent single-layer model were presented in the already mentioned
articles [50, 51, 53]. The results obtained for the cylindrical bending of
cross-ply symmetrically laminated plates showed an improvement in
describing the in-plane response with respect to the first-order shear
deformation theory [51]. Applications to unsymmetrically laminated plates
were presented in [53]. Shell applications based on [51] were developed by
Bhaskar and Varadan [61] and Jing and Tzeng [62]. Bhaskar and Varadan
[61] underlined the severe limitation of the transverse shear stress a priori
evaluated by the assumed model. Finite element applications of this model
have been developed. The linear analysis of thick plates was discussed by
Rao and Meyer-Piening [63]. Linear and geometrically non-linear static and
dynamic analyses were considered by Carrera [54, 64] and co-authors [65].
Partial implementations to shell elements were proposed by Bhaskar and
Varadan [66]. A full shell implementation has recently been given by Brank
and Carrera [67].
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The limitations of the equivalent single-layer analysis were known to
Toledano and Murakami [53] who applied RMVT in a multilayered model.
A linear in-plane displacement expansion was expressed in terms of the
interface values in each layer while the transverse shear stresses were
assumed parabolic. It was shown that the accuracy of the resulting theories
was independent of layout. Transverse normal stress and related effects were
discarded and the analysis showed severe limitations when analyzing thick
plates. A more comprehensive evaluation of layer-wise theories for linear and
parabolic expansions was made by the first author in [55] where applications
to the static analysis of plates were presented. Subsequent work extended
the analysis to dynamic cases [28, 56, 59, 60] and shell geometry [52, 57, 58].
A more exhaustive overview work of based on Reissner’s theorem has been
provided in [19].

4.6 Remarks on the Theories

In the authors’ opinion the work by Lekhnitskii is the most relevant
contribution to multilayered structure modeling:

• L1. This is the first work to account for the C0
z -requirements.

• L2. Even though Lekhnitskii restricted his analysis to a cantilevered
multilayered beam, he quoted explicit formulas for transverse stresses and
displacement fields (Eqs. (4.4) and (4.5)), which are valid at all points
of the considered beam. This could be extremely useful in assessing new
analytical and numerical models.

• L3. The work by Lekhnitskii shows how multilayered structures problems
can be handled. For instance, it is clear in [22] that the inclusion of
a transverse normal stress would require a different choice of stress
functions.

• L4. The stress function formulation leads to in-plane and transverse
stress fields which fulfill “by definition” the 3D equilibrium equations.
Stresses were calculated by Lekhnitskii by solving a boundary-value
problem for the compatibility equations written in terms of a stress
function. In particular, the evaluation of transverse stresses does not
require any post-processing procedure such as Hooke’s law or integration
of 3D equilibrium equations.

• L5. Although transverse normal stresses are neglected, the transverse
displacement varies in the beam thickness according to a piecewise-
parabolic distribution. A direct attempt to include the transverse
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normal stress effect would require an appropriate choice for the stress
function.

Concerning Lekhnitskii–Ren plate theory observe that:

• LR1. The transverse shear stresses are continuous at the interfaces and
parabolic in each layer. Furthermore, homogeneous conditions are fulfilled
at the top-bottom plate surfaces.

• LR2. Four independent functions defined on Ω are used to express
transverse shear stresses. Layer constants, which are parabolic in each
layer, are used to describe the transverse shear stresses.

• LR3. Expressions for the layer constants were given by Ren. In other
words their calculation does not require any imposition of transverse
shear stresses.

• LR4. The in-plane displacements are continuous at each interface and are
cubic in each layer.

• LR5. Seven independent variables defined on Ω were used to describe
the displacement and stress fields in the laminated plates. Four are
used for the transverse shear stresses and three for the displacements
corresponding to the chosen reference surface Ω.

• LR6. According to Lekhnitskii, Ren neglects the transverse normal stress
σzz . In contrast to Lekhnitskii, the transverse normal strain εzz is
discarded by Ren.

• LR7. The transverse shear stresses are calculated by Ren directly using
Eqs. (4.4). Hooke’s Law is not used and integration of the 3D equilibrium
equations is not required.

Regarding the Ambartsumian–Whitney–Rath–Das theory notice that:

• AWRD1. As LR1.
• AWRD2. Two independent functions defined on Ω are used to express

transverse shear stresses (Eqs. (4.6)).
• AWRD3. Layer constants, parabolic in each layer, must be computed

by imposing transverse shear stress continuity at each interface while
the form of the f(z) function is found by imposing top-bottom layer
homogeneous conditions.

• AWRD4. As LR4.
• AWRD5. Five independent variables defined on Ω are used to describe

the displacement and stress fields in a laminated plate/shell, which is two
less than LR.

• AWRD6. As LR6.
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• AWRD7. The literature shows that much better evaluations for
transverse shear stresses are obtained via integration of the 3D equili-
brium equations, with respect to Eqs. (4.6).

• AWRD8. The extension to a shell requires a reformulation of the
displacement models and related layer constants.

For the Reissner–Murakami–Carrera theory observe that:

• RMC1. As LR1. In this case, homogeneous as well as inhomogeneous
conditions for transverse stresses can be included.

• RMC2. At least 2Nl + 1 independent variables must be used for each
transverse stress component. However, these variables can be expressed
in terms of the displacement variables using a weak form of Hooke’s
law.

• RMC3. The in-plane displacements are continuous at each interface and
can be chosen linear or of higher order in each layer.

• RMC4. The number of independent variables can be chosen arbitrarily
according to RMC3.

• RMC5. Interlaminar continuous transverse normal stresses/strains can be
easily described by the RMC theory. These effects were, in fact, included
in the early development of the RMC theory, fulfilling the fundamental
Koiter’s recommendation.

• RMC6. As for the AWRD theory much better evaluations for transverse
stresses are obtained via integration of the 3D equilibrium equations,
with respect to assumed forms, e.g. Eqs. (4.14).

• RMC7. The extension to a shell does not require any changes in either
displacement or stress fields.

4.7 A Brief Discussion on Layer-Wise Theories

The previous discussion has been restricted to ESLM. In this class of
theories the number of unknown variables doesn’t depend on the number
of layers (it is intended that for the RMC theory this restriction is only for
displacement variables). The use of independent variables in each layer,
as in the layer-wise description, increases computational costs. On the
other hand, such a choice permits one to include “naturally” the zig-
zag form of displacements in the thickness direction and in general can
significantly improve for the response of very thick structures. In this
respect, the authors’ experience suggests that the layer-wise description
is mandatory for thick plate/shell analyses and in any other problems in
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which the response is essentially a layer response. In particular, in [60]
the first author showed that the use of a sufficiently high order for the
displacement fields in the layers could lead to a description with acceptable
accuracy of the transverse stresses directly computed by Hooke’s law. Many
layer-wise theories have been proposed. So called global/local approaches
have also been proposed, see Reddy [21]. Excellent overviews can be found
in the review articles and books mentioned in the Introduction.

To the best of the authors’ knowledge, there is no layer-wise theory
based on the LR approach. Works with a layer-wise description in the
framework of the AWRD theories have recently been discussed by Cho
and Averill [68]. Studies on the use of the RMC theory have been made
for plates by Toledano and Murakami [53] and extended to higher-order
cases (including normal stress effects), dynamics, and shells in the Carrera’s
articles [55, 60].

4.8 CUF Shell Finite Elements

The efficient load-carrying capabilities of shell structures make them very
useful in a variety of engineering applications. The continuous development
of new structural materials leads to ever more complex structural designs
that require careful analysis. Although analytical techniques are very
important, the use of numerical methods to solve mathematical shell models
of complex structures has become an essential ingredient in the design
process. The finite element method (FEM) has been the fundamental
numerical procedure in the analysis of shells.

In this section, a new shell finite element approach based on variable
kinematic models within Carrera’s unified formulation [27, 28] is presented.
Elements with nine nodes and cylindrical geometry are considered.
Referring to Bathe and others [35–37], the MITC method is used to
overcome the locking phenomenon. The governing equations are derived in
the framework of the CUF in order to apply FEM. Some numerical results
are provided to show the efficiency of the new element.

4.8.1 Geometry of cylindrical shells

Let us consider a cylindrical shell. In a system of Cartesian coordinates
(O, x, y, z), the region occupied by the mid-surface of the shell is:

S = {(x, y, z) ∈ R3 : −L/2 < x < L/2, y2 + z2 = R2} (4.20)



June 8, 2013 13:43 9in x 6in Mathematical Methods and Models in Composites b1507-ch04 2nd Reading

Classical, Refined, Zig-Zag and Layer-Wise Models for Laminated Structures 153

where L and R are the length and the radius of the shell, respectively. Let
us consider a curvilinear coordinate system (α, β, z) placed at the center of
the upper part of the mid-surface. The 3D medium corresponding to the
shell is defined by the 3D chart given by:

Φ(α, β, z) = φ(α, β) + za3(α, β), (4.21)

where a3 is the unit vector normal to the tangent plane. Then, the mid-
surface S of the cylindrical shell is described by the following 2D chart:


φ1(α, β) = α

φ2(α, β) = R sin(β/R)

φ3(α, β) = R cos(β/R).

(4.22)

With this choice, the region Ω ⊂ R2 corresponding to the mid-surface S is
the rectangle:

Ω = {(α, β) : −L/2 < α < L/2, −Rπ < β < Rπ}. (4.23)

Using these geometrical assumptions, the strain–displacement relations can
be obtained by considering the linear part of the 3D Green–Lagrange strain
tensor. Remembering that in the unified formulation the unknowns are
the components of the displacement uτ (α, β), vτ (α, β), and wτ (α, β), for
τ = 0, 1, . . . , N , the geometrical relations for the kth layer of a multilayer
cylindrical shell can be written as follow:

εk
αα = Fτuk

τ,α

εk
ββ = Fτ

[(
1 +

zk

Rk

)
wk

τ

Rk
+

(
1 +

zk

Rk

)
vk

τ,β

]

εk
αβ = Fτ

[
uk

τ,β +
(

1 +
zk

Rk

)
vk

τ,α

]
εk

αz = wk
τ,αFτ + uk

τFτ,z

εk
βz = Fτ

[
wk

τ,β − vk
τ

Rk

]
+ Fτ,z

[(
1 +

zk

Rk

)
vk

τ

]
εk

zz = wk
τ Fτ,z,

(4.24)

where Rk is the radius of the mid-surface of the layer k. The thickness
functions Fτ are Taylor functions (1, z, z2, . . .) if the approach used is
ESL or combinations of Legendre polynomials if the approach is LW
(see Eqs. (4.16)). For more details of the geometrical description and the
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procedure to obtain the strain–displacement relations, the reader can refer
to [69].

The previous geometrical relations can be expressed in matrix form as:

εk
p =(Dk

p + Ak
p)uk

εk
n =(Dk

nΩ + Dk
nz − Ak

n)uk,
(4.25)

where subscripts (p) and (n) indicate in-plane and normal components,
respectively, and the differential operators are defined as follows:

Dk
p =


∂α 0 0

0 Hk∂β 0
∂β Hk∂α 0


, Dk

nΩ =


0 0 ∂α

0 0 ∂β

0 0 0


,

Dk
nz = ∂z · Ak

nz = ∂z


1 0 0

0 Hk 0
0 0 1


, (4.26)

Ak
p =


 0 0 0

0 0 1
Rk

Hk

0 0 0


, Ak

n =


 0 0 0

0 1
Rk

0
0 0 0


, (4.27)

where Hk = (1 + zk/Rk).

4.8.2 MITC method

Considering the components of the strain tensor in the local coordinate
system (ξ, η, z), the MITC shell elements are formulated using – instead
of the strain components directly computed from the displacements –
an interpolation of these strain components within each element using
a specific interpolation strategy for each component. The corresponding
interpolation points — called the tying points— are shown in Fig. 4.6 for a
nine-node shell element (MITC9 shell element). For more details see [69].

The interpolating functions are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2] (4.28)

Nm3 = [NP , NQ, NR, NS ].

For convenience, we will indicate with the subscripts m1, m2, and
m3 the quantities calculated for the points (A1, B1, C1, D1, E1, F1),
(A2, B2, C2, D2, E2, F2), and (P, Q, R, S), respectively.
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Fig. 4.6. Tying points for MITC9 shell finite element.

According to the MITC method, the strain components are interpolated
on the tying points as follows:

εk
p =



εk
11

εk
22

εk
12


 =




Nm1 0 0
0 Nm2 0
0 0 Nm3







εk
11m1

εk
22m2

εk
12m3


 = [N1]




εk
11m1

εk
22m2

εk
12m3




εk
n =



εk
13

εk
23

εk
33


 =




Nm1 0 0
0 Nm2 0
0 0 1






εk
13m1

εk
23m2

εk
33


 = [N2]



εk
13m1

εk
23m2

εk
33


 ,

(4.29)

which defines the matrixes N1 and N2.
Applying the finite element method, the unknown displacements are

interpolated on the nodes of the element by means of the Lagrangian shape
functions Ni (for i = 1, . . . , 9):

uk = FτNiq
k
τi

, (4.30)

where qk
τi

are the nodal displacements and the unified formulation is
applied. Substituting in Eqs. (4.25) the geometrical relations become:

εk
p =Fτ (Dk

p + Ak
p)(NiI)qk

τi

εk
n =Fτ (Dk

nΩ − Ak
n)(NiI)qk

τi
+ Fτ,zA

k
nz(NiI)qk

τi
,

(4.31)

where I is a 3 × 3 identity matrix.
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If the MITC technique is applied, the geometrical relations are
rewritten as follows:

εkτ
pim

=Fτ [Ck
3im

]qk
τi

εkτ
nim

=Fτ [Ck
1im

]qk
τi

+ Fτ,z [Ck
2im

]qk
τi

,
(4.32)

where the introduced matrixes are:

[Ck
1im

] = [N2]



[(Dk

nΩ − Ak
n)(NiI)]m1(1, :)

[(Dk
nΩ − Ak

n)(NiI)]m2(2, :)
[(Dk

nΩ − Ak
n)(NiI)](3, :)




[Ck
2im

] = [N2]



[Ak

nz(NiI)]m1(1, :)
[Ak

nz(NiI)]m2(2, :)
[Ak

nz(NiI)](3, :)


 (4.33)

[Ck
3im

] = [N1]



[(Dk

p + Ak
p)(NiI)]m1(1, :)

[(Dk
p + Ak

p)(NiI)]m2(2, :)
[(Dk

p + Ak
p)(NiI)]m3(3, :)


 .

(1,:), (2,:), and (3,:) respectively indicate that the first, second, or third
line of the relevant matrix is considered.

4.8.3 Governing equations

This section presents the derivation of the governing equations based on the
principle of virtual displacements (PVD) for a multilayered shell subjected
to mechanical loads. CUF can be used to obtain the so-called fundamental
nuclei, which are simple matrices representing the basic elements from
which the stiffness matrix of the whole structure can be computed.

The PVD for a multilayered shell with Nl layers is:

Nl∑
k=1

∫
Ωk

∫
Ak

{
δεk

pG

T
σk

pC + δεk
nG

T
σk

nC

}
dΩkdzk =

Nl∑
k=1

δLk
e , (4.34)

where Ωk and Ak are the integration domains in the plane (α,β) and
the z-direction, respectively, and T indicates the transpose of a vector.
The first member of the equation represents the variation of internal work
δLk

int and δLk
e is the external work. G means geometrical relations and C

constitutive relations. The first step in deriving the fundamental nuclei
is the substitution of the constitutive equations (C) in the variational
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statement of PVD, which are:

σk
pC = σks

pjn
= Ck

pp εks
pjn

+ Ck
pn εks

njn

σk
nC = σks

njn
= Ck

np εks
pjn

+ Ck
nn εks

njn

(4.35)

with

Ck
pp =




Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66


 Ck

pn =




0 0 Ck
13

0 0 Ck
23

0 0 Ck
36




Ck
np =




0 0 0
0 0 0

Ck
13 Ck

23 Ck
36


 Ck

nn =




Ck
55 Ck

45 0
Ck

45 Ck
44 0

0 0 Ck
33


 ,

(4.36)

and C are the material coefficients.
Then, one substitutes the geometrical relations (4.32) and the

constitutive equations (4.35) into the variational statement (4.34) to obtain
the governing equation system:

δuk
τi

T
: Kkτsij

uu uk
sj = P k

uτi, (4.37)

where Kkτsij
uu is the fundamental nucleus of the stiffness array, which is

expanded according to the indexes τ ,s and i,j in order to obtain the
matrix for the whole shell. P k

uτ is the fundamental nucleus of the external
mechanical load. The explicit form of the stiffness fundamental nucleus is
the following:

Kkτsij
11 = Ck

55Nim1 � Nm1Nn1 �Ωk
Njn1 � Fτ,zFs,z �Ak

+Ck
11Ni,αm1 � Nm1Nn1 �Ωk

Nj,αn1 � FτFs �Ak

+Ck
16Ni,βm3 � Nm3Nn1 �Ωk

Nj,αn1 � FτFs �Ak

+Ck
16Ni,αm1 � Nm1Nn3 �Ωk

Nj,βn3 � FτFs �Ak

+Ck
66Ni,βm3 � Nm3Nn3 �Ωk

Nj,βn3 � FτFs �Ak

Kkτsij
12 = −Ck

45

1
Rk

Nim1 � Nm1Nn2 �Ωk
Njn2 � Fτ,zFs �Ak

+Ck
45Nim1 � Nm1Nn2 �Ωk

Njn2 � HkFτ,zFs,z �Ak
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+Ck
12Ni,αm1 � Nm1Nn2 �Ωk

Nj,βn2 � HkFτFs �Ak

+Ck
16Ni,αm1 � Nm1Nn3 �Ωk

Nj,αn3 � HkFτFs �Ak

+Ck
26Ni,βm3 � Nm3Nn2 �Ωk

Nj,βn2 � HkFτFs �Ak
(4.38)

+Ck
66Ni,βm3 � Nm3Nn3 �Ωk

Nj,αn3 � HkFτFs �Ak

Kkτsij
13 = Ck

13Ni,αm1 � Nm1Nj �Ωk
�FτFs,z �Ak

+Ck
36Ni,βm3 � Nm3Nj �Ωk

�FτFs,z �Ak

+Ck
12

1
Rk

Ni,αm1 � Nm1Nn2 �Ωk
Njn2 � HkFτFs �Ak

+Ck
26

1
Rk

Ni,βm3 � Nm3Nn2 �Ωk
Njn2 � HkFτFs �Ak

+Ck
55Nim1 � Nm1Nn1 �Ωk

Nj,αn1 � Fτ,zFs �Ak

+Ck
45Nim1 � Nm1Nn2 �Ωk

Nj,βn2 � Fτ,z Fs �Ak

Kkτsij
21 = −Ck

45

1
Rk

Nim2 � Nm2Nn1 �Ωk
Njn1 � FτFs,z �Ak

+Ck
45Nim2 � Nm2Nn1 �Ωk

Njn1 � HkFτ,zFs,z �Ak

+Ck
12Ni,βm2 � Nm2Nn1 �Ωk

Nj,αn1 � HkFτFs �Ak

+Ck
16Ni,αm3 � Nm3Nn1 �Ωk

Nj,αn1 � HkFτFs �Ak

+Ck
26Ni,βm2 � Nm2Nn3 �Ωk

Nj,βn3 � HkFτFs �Ak

+Ck
66Ni,αm3 � Nm3Nn3 �Ωk

Nj,βn3 � HkFτFs �Ak

Kkτsij
22 = Ck

22Ni,βm2 � Nm2Nn2 �Ωk
Nj,βn2 � H2

kFτFs �Ak

+Ck
26Ni,βm2 � Nm2Nn3 �Ωk

Nj,αn3 � H2
kFτFs �Ak

+Ck
26Ni,αm3 � Nm3Nn2 �Ωk

Nj,βn2 � H2
kFτFs �Ak

+Ck
66Ni,αm3 � Nm3Nn3 �Ωk

Nj,αn3 � H2
kFτFs �Ak

(4.39)

+Ck
44

1
R2

k

Nim2 � Nm2Nn2 �Ωk
Njn2 � FτFs �Ak

−Ck
44

1
Rk

Nim2 � Nm2Nn2 �Ωk
Njn2 � HkFτFs,z �Ak

−Ck
44

1
Rk

Nim2 � Nm2Nn2 �Ωk
Njn2 � HkFτ,zFs �Ak

+Ck
44Nim2 � Nm2Nn2 �Ωk

Njn2 � H2
kFτ,z Fs,z �Ak
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Kkτsij
23 = Ck

22

1
Rk

Ni,βm2 � Nm2Nn2 �Ωk
Njn2 � H2

kFτFs �Ak

+Ck
23Ni,βm2 � Nm2Nj �Ωk

�HkFτFs,z �Ak

+Ck
26

1
Rk

Ni,αm3 � Nm3Nn2 �Ωk
Njn2 � H2

kFτFs �Ak

+Ck
36Ni,αm3 � Nm3Nj �Ωk

�HkFτFs,z �Ak

−Ck
45

1
Rk

Nim2 � Nm2Nn1 �Ωk
Nj,αn1 � FτFs �Ak

−Ck
44

1
Rk

Nim2 � Nm2Nn2 �Ωk
Nj,βn2 � FτFs �Ak

+Ck
45Nim2 � Nm2Nn1 �Ωk

Nj,αn1 � HkFτ,zFs �Ak

+Ck
44Nim2 � Nm2Nn2 �Ωk

Nj,βn2 � HkFτ,z Fs �Ak

Kkτsij
31 = Ck

55Ni,αm1 � Nm1Nn1 �Ωk
Njn1 � FτFs,z �Ak

+Ck
45Ni,βm2 � Nm2Nn1 �Ωk

Njn1 � FτFs,z �Ak

+Ck
12

1
Rk

Nim2 � Nm2Nn1 �Ωk
Nj,αn1 � HkFτFs �Ak

+Ck
13 � NiNn1 �Ωk

Nj,αn1 � Fτ,zFs �Ak

+Ck
26

1
Rk

Nim2 � Nm2Nn3 �Ωk
Nj,βn3 � HkFτFs �Ak

+Ck
36 � NiNn3 �Ωk

Nj,βn3 � Fτ,z Fs �Ak

Kkτsij
32 = Ck

22

1
Rk

Nim2 � Nm2Nn2 �Ωk
Nj,βn2 � H2

kFτFs �Ak

+Ck
23 � NiNn2 �Ωk

Nj,βn2 � HkFτ,zFs �Ak

+Ck
26

1
Rk

Nim2 � Nm2Nn3 �Ωk
Nj,αn3 � H2

kFτFs �Ak

+Ck
36 � NiNn3 �Ωk

Nj,αn3 � HkFτ,z Fs �Ak

−Ck
45

1
Rk

Ni,αm1 � Nm1Nn2 �Ωk
Njn2 � FτFs �Ak

(4.40)

−Ck
44

1
Rk

Ni,βm2 � Nm2Nn2 �Ωk
Njn2 � FτFs �Ak

+Ck
45Ni,αm1 � Nm1Nn2 �Ωk

Njn2 � HkFτFs,z �Ak

+Ck
44Ni,βm2 � Nm2Nn2 �Ωk

Njn2 � HkFτFs�Ak
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Kkτsij
33 = Ck

22

1
R2

k

Nim2 � Nm2Nn2 �Ωk
Njn2 � H2

kFτFs �Ak

+Ck
23

1
Rk

Nim2 � Nm2Nj �Ωk
�HkFτFs,z �Ak

+Ck
23

1
Rk

� NiNn2 �Ωk
Njn2 � HkFτ,zFs �Ak

+Ck
33 � NiNj �Ωk

�Fτ,zFs,z �Ak

+Ck
55Ni,αm1 � Nm1Nn1 �Ωk

Nj,αn1 � FτFs �Ak

+Ck
45Ni,βm2 � Nm2Nn1 �Ωk

Nj,αn1 � FτFs �Ak

+Ck
45Ni,αm1 � Nm1Nn2 �Ωk

Nj,βn2 � FτFs �Ak

+Ck
44Ni,βm2 � Nm2Nn2 �Ωk

Nj,βn2 � FτFs�Ak

where � · · ·�Ωk
indicates

∫
Ωk

. . . dΩk and � · · ·�Ak indicates
∫

Ak
. . . dzk.

4.9 Numerical Examples

The model introduced does not involve an approximation of the geometry
of the shell and it accurately describes the curvature of the shell. However,
the locking phenomenon is still present. In this work, the model is combined
with a simple displacement formulation. The CUF, coupled with the MITC
method, allows us to increase the degree of approximation by increasing
the order of expansion of the displacements in the thickness direction
and the number of elements used. Firstly, the reliability of the model is
analyzed. Two classical discriminating test problems are considered: the
pinched cylinder with a diaphragm [62], which is the most severe test for
both inextensional bending modes and complex membrane states; and the
Scordelis–Lo problem [63], which is extremely useful for determining the
ability of a finite element to accurately solve complex states of a membrane
strain.

The pinched shell has been analyzed in [32] and the essential shape is
shown in Fig. 4.7. It is simply supported at each end by a rigid diaphragm
and singularly loaded by two opposing forces acting at the midpoint of
the shell. Due to the symmetry of the structure the computations have
been performed, using a uniform decomposition, on an octave of the shell.
The physical data given in Table 4.1 have been assumed. The following
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Fig. 4.7. Pinched shell.

Table 4.1. Physical data for pinched shell.

Young’s modulus E 3 × 106 psi = 20.684 × 109 N/m2

Poisson’s ratio ν 0.3
Load P 1 lb = 0.154 Kg
Length L 600 in = 15.24 m
Radius R 300 in = 7.62 m
Thickness h 3 in = 0.0762 m

symmetry conditions and boundary conditions are applied:

vs(α, 0) = 0

us(0, β) = 0

vs(α, Rπ/2) = 0

vs(L/2, β) = ws(L/2, β) = 0

(4.41)

with s = 0, 1, . . . , N .
In Table 4.2 the transversal displacement at the loaded point C is

presented for several decompositions [n × n] and different theories. The
high-order equivalent single-layer theories in the CUF are indicated with
the acronym ESLN , where N is the order of expansion. The exact solution
is given by Flügge in [70] 1.8248×10−5 in. The table shows that the MITC9
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Table 4.2. Pinched shell. Transversal
displacement w in ×105.

Theory [4 × 4] [10 × 10] [13 × 13]

Koiter 1.7891 1.8231 1.8253
Naghdi 1.7984 1.8364 1.8398
ESL1 1.9212 1.9583 1.9617
ESL2 1.7805 1.8361 1.8408

ESL3 1.7818 1.8380 1.8428
ESL4 1.7818 1.8380 1.8428

Fig. 4.8. Scordelis–Lo roof.

element has good convergence and robustness on increasing the mesh size.
According to Reddy [21], the results obtained with high-order theories are
greater than the reference value because Flügge uses a classical shell theory.
Indeed, the solution calculated with the Koiter model for mesh [13 × 13]
is very close to the exact solution, while the Naghdi model, which takes
into account the shear energy, gives a higher value, as one would expect.
The ESL theory with linear expansion (ESL1) produces such a high value
because a correction for Poisson locking has been applied (for details of
Poisson locking one can refer to [72]), but for cylindrical shell structures
this correction causes problems. The remaining theories give almost the
same results and they converge to the same value (1.842 × 10−5 in) by
increasing the order of expansion and the number of elements used.

The second problem (the Scordelis–Lo problem [71]) concerns a
cylindrical shell known in the literature as a barrel vault, see Fig. 4.8. The
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Table 4.3. Physical data for barrel vault.

Young’s modulus E 4.32 × 106 lb/h2 = 20.684 × 109 N/m2

Poisson’s ratio ν 0.0

Load P 90 lb/ft2 = 4309.224 N/m2

Length L 50 ft = 15.24 m
Radius R 25 ft = 7.62 m
Thickness h 0.25 ft = 0.0762 m
Angle θ0 2π/9 rad

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0.31

 4  5  6  7  8  9  10  11  12  13

w
[ft

]

n

exact
ESL4(s)

ESL4(m+)

Fig. 4.9. Scordelis–Lo problem. Transversal displacement w [ft] at the point B of the
mid–surface S.

shell is simply supported on diaphragms, is free on its other sides, and is
loaded by its own weight P . The physical data given in Table 4.3 have been
assumed. The computations were performed only on a quarter of the shell,
using a uniform decomposition.

The exact solution for this problem is given by McNeal and Harder
in [73] in terms of the transversal displacement at the point B: 0.3024 ft.
In Fig. 4.9, the solution is given for several decompositions [n × n]. The
performance of the MITC9 element in which a correction for both shear
and membrane locking has been applied (m+) is compared with an element
in which only shear locking has been corrected (s). The figure confirms the
conclusions for the pinched shell: the results converge to the exact solution
on increasing the number of elements used. Moreover, the figure shows that
for thin shells (h/R = 0.01) the correction for membrane locking is essential
because for coarse meshes the solution (m+) is much higher than the (s)
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solution. One can conclude that the MITC9 element is completely locking
free. The theory used for this analysis is ESL4 but the behavior is the same
also for the other models.

Finally, a multilayered shell was analyzed in order to show the
superiority of LW and the zig-zag models compared to ESL models. The
orthotropic cylindrical shell studied by Varadan and Bhaskar in [74] is
considered. The ends are simply supported. The loading is an internal
sinusoidal pressure, applied normal to the shell surface, given by:

p+
z = p̂+

z sin
(mπα

a

)
sin

(
nπβ

b

)
, (4.42)

where the wave numbers are m = 1 and n = 8. The amplitude of the
load p̂+

z is assumed to be 1. a is the length and b the circumference of the
cylinder.

The cylinder is made up of three equal layers with lamination
(90◦/0◦/90◦). Each layer is assumed to be made of a square symmetric
unidirectional fibrous composite material with the following properties:

EL/ET = 25

GLT /ET = 0.5

GTT /ET = 0.2

νLT = νTT = 0.25,

(4.43)

where L is the direction parallel to the fibers and T is the transverse
direction. The length a of the cylinder is assumed to be 4Rβ, and the
radius Rβ , referred to the mid-surface of the whole shell, is 10. Since
the cylinder is a symmetric structure and it is symmetrically loaded, the
computations were performed only on an octave of the shell, using a uniform
decomposition.

The solution is given in terms of the transversal displacement w for
different values of the thickness ratio Rβ/h, where h is the global thickness
of the cylinder. According to [74], the following dimensionless parameter is
used:

w̄ = w
10ELh3

p̂+
z R4

β

. (4.44)

The results are presented in Table 4.4 and are compared with the 3D-
elasticity solution given by Varadan and Bhaskar in [74]. The transversal
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Table 4.4. Varadan and Bhaskar. Dimensionless transversal
displacement at the max-loading point in z = 0.

Rβ/h 2 4 10 50 100 500

3D 10.1 4.009 1.223 0.5495 0.4715 0.1027
ESL4 9.682 3.782 1.1438 0.5456 0.4707 0.1029
ESL3 9.664 3.785 1.1439 0.5456 0.4707 0.1029
ESL2 8.280 2.971 0.9540 0.5378 0.4692 0.1029

ESL1 8.925 3.015 0.9559 0.5380 0.4696 0.1034
Naghdi 8.421 2.872 0.9382 0.5370 0.4688 0.1029
Koiter 0.4094 0.4796 0.5205 0.5209 0.4656 0.1029

ESLZ3 9.791 3.987 1.224 0.5493 0.4715 0.1029

ESLZ2 9.596 3.866 1.191 0.5479 0.4712 0.1029
ESLZ1 10.228 3.901 1.191 0.5457 0.4694 0.1028

LW4 10.267 4.032 1.225 0.5493 0.4715 0.1029
LW3 10.256 4.031 1.225 0.5493 0.4715 0.1029

LW2 9.789 3.971 1.223 0.5493 0.4715 0.1029
LW1 9.689 3.874 1.191 0.5477 0.4710 0.1029

displacement is calculated on the mid-surface of the multilayered shell
(z = 0), at the max-loading point. An [8 × 8] mesh was used, which is
sufficient to ensure numerical convergence. Equivalent single-layer (ESLN),
zig-zag (ESLZN), and layer-wise (LWN) theories in the CUF are employed
for the analysis. Also the classical Koiter’s and Naghdi’s models were
used for comparison. One can note that the solution obtained with the
classical models is completely wrong, while the ESL theories give a more
accurate solution by increasing the order of expansion N , especially for
high-thickness ratios. If one takes into account also the zig-zag effects in
the displacements using Murakami’s zig-zag function (ESLZ models), the
results improve again and the ESLZ3 theory provides approximately the
3D solution even for very thick shells. Finally, the table shows that the LW
theories give the best results even when the order of expansion is not
high (N = 2,3), according to the assertions made in the introduction of
this chapter about C0

z -requirements. This behavior is particularly visible
for thick shells (Rβ/h = 2, 4). For very thin shells (Rβ/h = 500) all the
theories converge to the 3D solution and this fact demonstrates once again
the numerical efficiency of the new approach. Note that the LW3 and LW4
models give a solution slightly higher than the 3D solution for very thick
shells. This is due to a curvature approximation along the thickness, which
can be easily eliminated by considering the shell to be composed of thinner
fictitious layers with the same properties.
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4.10 Conclusions

In this chapter, it has been shown that there are three independent ways
of introducing “zig-zag” theories for the analysis of multilayered plates and
shells. In particular, it has been established that:

• Lekhnitskii [22] was the first to propose a theory for multilayered
structures that describes the zig–zag form of a displacement field in
the thickness direction and the interlaminar equilibrium of transverse
stresses.

• Three different and independent theories are proposed in the literature.
Apart from the one by Lekhnitskii [22], the other two approaches were
based on work by Ambartsumian [44, 55] and Reissner [48], respectively.

• Based on the authors’ historical considerations, which are documented
in this chapter, it is suggested that these three approaches are called
the Lekhnitskii–Ren, Ambartsumian–Whitney–Rath–Das, and Reissner–
Murakami–Carrera theories, respectively.

• As far as the Ambartsumian–Whitney–Rath–Das theory is concerned,
it should be underlined that other developments, even though derived
independently by other authors (such as those originated by Yu [75] and
Chou and Carleone [76], Disciuva [77], Bhaskar and Varadan [78], Cho
and Parmerter [79], among others), are applications of the AWRD theory.

Even though most of this discussion has been about the so-called ESLMs,
these being more relevant for the subject of this chapter, a brief outline of
LWMs was given in Section 4.7.

The author would encourage scientists, who are working on the
analysis of multilayer structures, to return to the fundamental work by
Lekhnitskii [22], Ambartsumian [44, 45], and Reissner [48]. There is, in
fact, a significant amount to learn from these works and probably more
could be done, on the basis of these fundamental works, to obtain a better
understanding of the mechanics of multilayered structures. In particular,
future developments could be to extend Lekhnitskii’s theory as well as
Reissner’s theorem. This latter, in the authors’ opinion, is the natural tool
for the analysis of multilayered structures.

As a final remarks the authors are clearly aware that this historical
review may be not complete. The authors are aware that other significant
articles and papers could exist on this subject that have not been
considered. However, what has been quoted in this chapter will help to



June 8, 2013 13:43 9in x 6in Mathematical Methods and Models in Composites b1507-ch04 2nd Reading

Classical, Refined, Zig-Zag and Layer-Wise Models for Laminated Structures 167

assign the right credit concerning the contributions and contributors to
multilayered theory.

The final part of this chapter discussed the development of a refined
shell finite element approach based on Carrera’s unified formulation. The
CUF has been coupled to the MITC method to overcome the locking
phenomenon that affects finite element analysis. The reliability of the
approach has been tested by considering classical discriminating problems,
such as the pinched cylinder studied in [70] and the Scordelis–Lo problem
analyzed in [71], and the approach has shown good convergence and
robustness on growing the mesh size. Moreover, the accuracy of the
solution has been demonstrated to improve by increasing the order of
expansion of the displacements in the thickness direction. Finally, the
orthotropic multilayered cylinder studied by Varadan and Bhaskar in [74]
was considered. From this analysis one can conclude that for the study
of multilayered structures it is mandatory to consider zig-zag effects in
the displacements in order to obtain the 3D solution. This is possible by
introducing Murakami’s zig-zag function in the ESL models or by using
the LW models briefly discussed in this chapter, which allow us to use
independent variables in each layer. This gives the best results.

For clarity, Table 4.5 summarizes the features of the theories cited in
this chapter for the analysis of laminated structures:

• Classical = classical models such as Kirchoff–Love, Reissner–Mindlin, and
so on;

• CUF-ESL = equivalent single-layer theories contained in the CUF, in
which a high order of expansion in the thickness direction is used for
both the in-plane and ransversal displacements;

• L = Lekhnitskii theory;
• LR = Lekhnitskii–Ren theory;

Table 4.5. Available theories for laminated structures.

Theory σnM ZZ IC εzz σzz

Classical [1–6]
CUF-ESL [9, 27] • •
L [22] • • •
LR [38–40] • •
AWRD [41–46] • •
RMC [47–53] • • • • •
CUF-LW-D [60] • • •
CUF-LW-M [54–60] • • • • •
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• AWRD = Ambartsumian–Whitney–Rath–Das theory;
• RMC = Reissner–Murakami–Carrera theory, based on ESL approach for

displacement variables;
• CUF-LW-D = layer-wise models contained in the CUF, based on the

principle of virtual displacements (PVD);
• CUF-LW-M = layer-wise models contained in the CUF, based on the

Reissner mixed variational theorem (RMVT).

The features, considered in the table, are the following:

• σnM = the transverse shear and normal stresses are unknown variables
with the displacements;

• ZZ = zig-zag effects are considered in the displacements;
• IC = interlaminar continuity of the transverse stresses is fulfilled;
• εzz = thickness stretching effects are considered, εzz �= 0;
• σzz = Koiter’s recommendation is fulfilled, σzz �= 0.

The symbol • indicates that the theory satisfies the corresponding feature.

References

[1] Cauchy A.L., 1828. Sur l’équilibre et le mouvement d’une plaque solide,
Exercises de Matematique, 3, 328–355.
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