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Abstract. The Component-Wise approach (CW) is a novel structural modeling strategy that stemmed
from the Carrera Unified Formulation (CUF). This work presents an overview of the enhanced capa-
bilities of the CW for the static and dynamic analysis of structures, such as aircraft wings, civil build-
ings, and composite plates. The CWmakes use of the advanced 1D CUF models. Such models exploit
Lagrange polynomial expansions (LE) to model the displacement field above the cross-section of the
structure. The use of LE allows the improvement of the 1Dmodel capabilities. LEmodels provide 3D-
like accuracies with far fewer computational costs. The use of LE leads to the CW. Although LE are
1D elements, every component of an engineering structure can be modeled via LE elements indepen-
dently of their geometry, e.g. 2D transverse stiffeners and panels, and of their scale, e.g. fiber/matrix
cells. The use of the same type of finite elements facilitates the finite element modeling to a great
extent. For instance, no interface techniques are necessary. Moreover, in a CW model, the displace-
ment unknowns are placed along the physical surfaces of the structure with no need for artificial lines
and surfaces. Such a feature is promising in a CAD/FEM coupling scenario. The CW approach can
be considered as an accurate and computationally cheap analysis tool for many structural problems.
Such as progressive failure analyses, multiscale, impact problems and health-monitoring.

Introduction

One-dimensional (1D) structural models - or beams - are computationally cheap and efficient. The 1D
modeling allows a 3D problem to be solved via a set of 1D variables, which only depend on the beam
axis coordinate. 1D structural elements present many advantages that make them more efficient than
2D (plate/shell) or 3D (solid) elements. For instance, in a finite element (FE) scenario, beam models
have no aspect ratio constraints. These features make beams still very appealing for the static and
dynamic analyses of structures. Beam models have been developed and exploited extensively over
the last few decades for the structural analysis of slender bodies, such as columns, arches, blades,
aircraft wings and bridges. This work presents an overview of a novel, component-wise (CW) model-
ing approach based on advanced beam models that widen the application scenarios of beams to many
structural problems that are usually addressable by 2D or 3D models only.
Classical beammodels are those by Euler-Bernoulli [1, 2] and Timoshenko [3]. In this work, the former
is referred to as EBBT, while the latter as TBT. The linear distribution of axial strain along the cross-
section under bending was also correctly hypothesized by Leonardo Da Vinci [4]. These models are
essentially based on a linear axial, out-of-plane displacement field and a constant transverse, in-plane
displacement field. EBBT can be used for the bending of homogenous, compact, isotropic structures.
TBT can be seen as an enhancement of EBBT via the addition of a uniform shear distribution above the
cross-section of the beam. Since at least a parabolic distribution is required, shear correction factors
are usually adopted with TBT. Such factors depend on the geometry of the cross-section. TBT can be
used for moderately thick orthotropic beams. Many refined beam models have been developed over
the last decades to extend the application of beam models to problems characterized by out-of-plane
warping, in-plane distortions, torsion, coupling effects, or local effects. These effects are usually due
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to small slenderness ratios, thin walls, geometrical and mechanical asymmetries, and the anisotropy
of the material.
Many methods have been proposed to enhance the capabilities of beam models and preserve their
computational efficiency. Several examples of these models can be found in well-known books on the
theory of elasticity, for example, the book by Novozhilov [5]. Some of the most important method-
ologies are the following [6]:

• The introduction of shear correction factors [7, 8, 9].

• Warping functions [10, 11, 12, 13].

• Saint-Venant based 3D solutions [14] and the Proper Generalized Decompositionmethod (PGD)
[15, 16].

• The Variational Asymptotic Beam Sectional Analysis (VABS), which is based on the Variational
Asymptotic Method (VAM) [17, 18].

• The Generalized Beam Theory (GBT) [19, 20].

• Higher-Order expansions [21, 22, 23, 24].

• The Carrera Unified Formulation (CUF) [25].

Most of these models were developed for metallic structures and then extended to composites. Well-
known examples are those by Reddy [26, 27], Surana [28], Kameswara Rao [29], Qatu [30], Eisen-
berger [31], Vidal [32], Shimpi [33], and Onate [34]. A comprehensive review can be found in [22, 23].
The present work presents an innovative approach based on the CUF. The CUF is a hierarchical for-
mulation that can be used to reduce 3D problems to 2D or 1D ones in a unified manner by exploiting
arbitrary rich expansions of the unknown variables. The main advantage and novelty of CUF models
stems from the possibility of setting the order of the theory as an input of the analysis. The proper
theory order is chosen via a convergence analysis for a given problem. CUF was first developed for
plates and shells [35, 36] and more recently for beams [37, 38]. In the last years, CUF 1Dmodels have
been successfully extended to many structural problems, including:

• Thin-walled [39, 40] and reinforced structures [41, 42].

• Buckling [43], free vibration [44, 45, 46], dynamic response analysis [47] and aeroelasticity
[48, 49, 50].

• Composite [51, 52, 53, 54, 55], functionally graded material (FGM)[56, 57] and nano-structures
[58].

• Variable kinematics [59, 60] and axiomatic/asymptotic analyses [61, 62].

• Load factors and non-structural masses [63, 64, 65].

• Rotors and rotating blades [66, 67, 68].

• Biomechanics [69] and multifield analysis [70, 71].

• Aerospace [72] and civil [73, 74] strictures.
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This work presents an overview of the most recent developments in the Component-Wise approach
(CW). The CW can be seen as an extension of 1D CUF and can be straightforwardly obtained by using
Lagrange polynomials to model the cross-section displacement field. In a CWmodel, each component
of a complex structure is modeled through 1D models. Lagrange polynomials make the assembling
of each component straightforward since it can be conducted at the interface level by imposing the
displacement continuity. Furthermore, 1D, 2D, and 3D structural elements can be modeled through
1D models by enriching the displacement fields. The definition of mathematical lines and surfaces is
no more needed since the unknown variables can be placed on the physical surfaces of the structure.
CW models have been recently exploited to deal with:

• Analysis of aerospace structures [75, 76, 65, 77, 78].

• Analysis of civil structures [79, 80].

• Analysis of fiber/matrix cells of composite structures [81, 82].

• Damage analysis [83].

This work is organized as follows: the CUF and CW are first introduced; numerical examples on
civil, aerospace and composite structures are then shown and discussed; the main conclusions and
perspectives are drawn.

Carrera Unified Formulation

Let us assume the Cartesian, orthogonal coordinate frame shown in Fig. 1. In the CUF framework, a
1D structural model can be built according to the following unified displacement field:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where u(x, y, z) = {ux, uy, uz}T is the displacement vector; Fτ (x, z) indicates the cross-section func-
tions; uτ is the generalized displacement vector; M indicates the number of terms in the expansion.
The repeated subscript indicates summation. The choice of Fτ and M is arbitrary. In other words,

x

z

y

W

Fig. 1: Coordinate frame.

various types of basis functions can be used to model the displacement field across the section - e.g.
polynomials, harmonics, exponentials, and combinations thereof - as well as any expansion orders.

The first 1D CUFmodel was developed using Taylor-like polynomial expansions and is referred to
as TE. For example, the displacement field of the second-order TE model can be expressed as follows:

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)
uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)
uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(2)

Where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 , etc.) represent the components of
the generalized displacement vector. Such a model is referred to as N = 2, where N indicates the
order of the expansion.
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LE models are based on Lagrange polynomial expansions. Each set of Lagrange polynomials is
referred to as L-element. In this work, mainly bi-quadratic nine-nodes (L9) Lagrange polynomials are
used as Fτ . Lagrange polynomials can be found in [38]. The displacement field within an L9 element
can be written as:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + ...+ F9(x, z)ux9(y)
uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + ...+ F9(x, z)uy9(y)
uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + ...+ F9(x, z)uz9(y)

(3)

Where ux1, ..., uz9 are the translational components of the nine points of the L9 element. The unknown
variables are only pure displacements. Figure 2 shows a typical L9 distribution above a cross-section
with local loads. The local refinement of the displacement field is achieved via the use of a finer
discretization. Arbitrary geometries can be dealt with via the iso-parametric formulation. Figure 3

Piecewise

L9

Discretization

F

F

Fig. 2: L9 element distribution above a cross-section undergoing local loads.

3D Geometry from CAD

The 3D geometry from
CAD can not be directly
exploited for FE modeling The 3D geometry from

CAD can be directly
exploited for FE modeling
and viceversa (e.g. for
optimization)

Classical modeling - Unknowns 

are defined on artificial, 

matematical lines/surfaces 

LE modeling - Unknowns 

are defined on the physical 

surface

Fig. 3: Classical and LE modeling strategies with respect to the 3D geometry.
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shows the LE capability of using directly the physical surfaces of the structure to place the unknown
variables. In other words, while classical models and TE require the definition of a line - commonly
known as the beam axis - along which the unknown variables are defined, LE can use the physical
boundaries of the 3D body. Such a feature can be of fundamental importance whenever a 3D CAD
geometry must be dealt with.

Geometrical and Constitutive Equations The stress σ and the strain ϵ vectors are defined as
follows:

σ = {σxx, σyy, σzz, σxy, σxz, σyz}T

ϵ = {ϵxx, ϵyy, ϵzz, ϵxy, ϵxz, ϵyz}T
(4)

The linear strain-displacement relations are employed,

ϵ = Du (5)

whereD is

D =
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= [DΩ] + [Dy] (6)

The constitutive law is
σ = C̃ϵ (7)

For the sake of brevity, the coefficients of C̃ are non reported here, they can be found in Reddy’s book
[84].
Finite Element Formulation and the Fundamental Nucleus The generalised displacement vector
uτ is interpolated along the y direction by means of the shape functions Ni,

u(x, y, z) = Fτ (x, z)Ni(y)uτi (8)

where uτi is the nodal unknown vector. According to the principle of virtual displacements, the internal
strain energy Lint can be written as follows:

δLint =

∫
V

δϵTσ dV (9)

Where δ stands for virtual variation. Considering Eqs. 5, 7 and 8, the virtual variation of the strain
energy can be written in a compact form:

δLint = δuT
sjKτsijuτi (10)

where Kτsij is the fundamental nucleus of the stiffness matrix and the superscripts indicate the four
indexes exploited to expand the elemental matrix: τ and s are related to the expansion functions Fτ

and Fs whereas i and j are related to the shape functions Ni and Nj .
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The fundamental nucleus, which is a 3x3 array, is formally independent of the order of the beam
model. By introducing the geometrical and constitutive relations, it is possible to rewrite the virtual
variation of Lint as

δLint = δuTsj

{∫
V

[(
DΩ +Dy

)T(
Fs(x, z)Nj(y)I

)]
C
[(

DΩ +Dy

)(
Ni(y)Fτ (x, z)I

)]
dV

}
uτi =

= δuTsj

{∫
l

(
Nj(y)

(∫
Ω

[
DT

Ω

(
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)]
C
[
DΩ

(
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)]
dΩ

)
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)
dy+

+
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(
Nj(y)I
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Ω
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)]
dΩ

)
Ni(y)

)
dy+

+

∫
l

(
DT
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(
Nj(y)I

)(∫
Ω

Fs(x, z)CFτ (x, z)dΩ
)
Dy

(
Ni(y)I

))
dy

}
uτi

(11)

where Ω is the cross-section domain and I is the unit matrix. All the other finite element matrices and
vectors can be written in a similar way, as shown in [38].

The Component-Wise Approach

The advanced capabilities of CUF 1D models can be particularly convenient in the case of multi-
component structures (MCS). MCS represent most of the engineering structures. Typical examples
are aircraft wings and composite structures. These structures are composed of multiple components,
which can have quite different geometrical and material characteristics. In a wing structure, for in-
stance, ribs and panels can be modelled as plates or shells (2D), while stiffeners or spars can be mod-
eled as beams (1D) or solids (3D). An efficient FE modelling of MCS often requires the coupling
of different elements – beams/shells/solids – to build sufficiently accurate models with a reasonable
number of DOFs.
A fibre reinforced composite plate is made of layers composed of matrix and fibers. In most cases, such
plates can be modeled as homogenized structures through the equivalent single layer (ESL) and layer-
wise (LW) approaches. The former models a multilayered plate as an equivalent monolayer plate. The
latter retains each layer but with higher computational costs. Recently, multiscale approaches have
been proposed to model composites up to the fiber and matrix level. Such approaches are necessary
to retain the microscale characteristics and to model processes occurring at a certain scale and influ-
encing the behavior of the system across several scales. A typical example of a multiscale problem is
failure analysis. Several multiscale approaches have been proposed in the last years, but their utiliza-
tion is still challenging due to their computational costs. A multiscale model can, in fact, easily have
millions of DOFs.
The CW exploits LE 1D elements to model each component of a structure separately and indepen-
dently of their geometrical and material characteristics. In other words, each 1D, 2D, 3D or micro and
macro component can be modeled via LE 1D models with no need for ad hoc coupling and interface
techniques. Figure 4(a) shows the CW approach for a four-stringer wing box. Each component of the
box is modelled using LE cross-sectional elements. In particular,

• Ribs are modeled as very short beams via refined displacement fields.

180 Composite Materials and Structures in Aerospace Engineering



• Each component geometrical and material characteristics are retained.

• The CW approach does not require coupling techniques, as the FE matrices of each element are
formally the same. This process usually leads to inaccuracies whenever beams, plates, shells,
and solids have to be interfaced.

CW models can be locally refined by using higher- or lower-order models where required. Such a
feature leads to further computational cost reductions.
CW can also lead to multiscale modeling. Figure 4(b) shows a typical CW strategy for a composite
plate; 1D LE models can be simultaneously adopted to model layers (macroscale), matrix and fibres
(microscale). This methodology can be very powerful when, for instance, detailed stress fields are
required in a specific portion of the structures. Figure 5 shows the different assemblage strategies
for a multicomponent structure stiffness matrix. In classical approaches, the structure is reduced to
a single equivalent structure. In the CW, the stiffness matrix elements of different components are
superimposed only at the interface level to impose the displacement continuity.

1D L-elements

Component-wise
approach

Reinforced shell
structure

Assembled
cross-section

(a) A reinforced shell structure for aerospace ap-
plications

The three layers of the structure
are the components of the CW

The top and middle layers, the
fibers and matrix of the bottom

layer are the components of the
CW approach

The middle layer, the fibers and
matrix of the top and bottom
layers are the components of

the CW approach

Only one fiber-matrix cell is
embedded in the CW model

(b) A fiber reinforced composite structure

Fig. 4: CW modeling of multi-component structures.

Numerical Examples

Static Analysis of Civil Structures A two-bay truss structure with transverse stiffeners was con-
sidered as the first example, see Fig. 6. The dimensions of the structure are: h = w = 0.2 m,
t = 0.02 m, L = 2 m. A steel alloy was employed, E = 210 GPa and ν = 0.29. A vertical point
load, Fz = −100 N, was applied at the middle-span transverse stiffener at x = 0, z = h/2. Hinged
supports were used. Figure 7 shows three different modeling strategies. Model A exploits a combi-
nation of L3, L4 and L9 elements. In particular, L4 were used for the stringers. In Model B, L3 and
L9 were used on the cross-section of the stiffener, whereas L9 elements were used for the longitudi-
nal frames. Model C has the same discretization scheme of Model B, but two L9 were used on the
cross-section of the horizontal and vertical frames. Table 1 shows the results in terms of transverse
displacement. CW models were compared with beam and solid models. Figure 8 shows the deformed
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Multicomponent Cross-Section

Equivalent Single 

Component Element

Component-Wise

Element

Fig. 5: Stiffness matrix assemblage schemes.

h

w

x

z

(a) Cross-Section

t

L

F
z

(b) Boundary Conditions

Fig. 6: Two-bay truss structure.

L9

L4

L3

(a) Model A

L9

L3

(b) Model B

L9

L3

(c) Model C

Fig. 7: Cross-Sectional L-element distributions for the truss structure.

configuration of the structure obtained by the CWmodel. A typical industrial frame was considered as
the second example, see Fig. 9 and Table 2. Columns and frames have a square cross-section with side
t = 0.2 m. The thickness of the roof is equal to t. A horizontal load, Fx = −2000 N, was applied. The
CWmodel is based on a beam laying along the y-axis. Figure shows the L-element distribution above
the cross-section of the structure. The sole difference between Model A and B is that 4L9 instead of
2L9 elements were used in Model B to discretize the columns to highlight local enrichment capability
of CW. Nastran models were employed for comparison purposes. A full solid model and an FE model
obtained by using a combination of 1D beam - 2-node CBAR beam elements to model columns and
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Table 1: Vertical displacement at [0, L/2, h/2] for the two-bay truss structure [79].
Model −uz, mm DOFs

CW
Model A 0.880 3828
Model B 1.015 6732
Model C 1.026 7596

Nastran
Beam 1.065 7562
Solid 1.050 98760

Fig. 8: Deformed two-bay truss structure, Model C.

frame - and 2D plate elements (CQUAD) for the roof. Table 3 shows the displacement and the number
of DOFs for each model. Figure 11 shows the deformed structure.

x

y
z

h1

h2

w

L

c

Fx

Fig. 9: Industrial frame.
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Table 2: Dimensions of the industrial frame
Dimensions, m
L 14.00
w 13.80
h1 7.00
h2 3.00
c 4.50

L9

L4

L3

(a) Model A

L9

L4

L3

(b) Model B

Fig. 10: Cross-Sectional L-element distributions for the industrial frame.

Table 3: Displacements for the industrial frame at the load application point [79].
Model −ux, mm DOFs

CW
Model A 0.713 6543
Model B 0.893 7119

Nastran
Beam/Shell 0.865 2835
Solid 0.858 143121

.
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Undeformed
CW, Model A
CW, Model B

Solid

Fig. 11: Deformed industrial frame.

The results suggest that

• The CW can analyse truss and frame structures, including stiffening members and panels.

• The CW results match Nastran ones.

• In particular, CW provides solid-like accuracies with very low computational costs.

• The computational efficiency of the proposed CW models is given not only by low computa-
tional costs. The CW models each structural component - columns, frame members, and roof
- with the same 1D element and different kinematics are not needed. Moreover, artificial lines
(beam axes) and surfaces (plate/shell reference surfaces) are no longer used. This is otherwise
possible only if 3D solid elements are adopted.

Dynamic Response of AircraftWingsAmetallic aircraft wing is considered in this section. ANACA
2415 airfoil cross-section was used with two longerons. The wing is 6 m long, and the chord is 1 m.
Figure 12 shows the configurations analysed. To analyse the behaviour of a thin-walled structure,
the model was modified by removing ribs and longerons, as in Fig. 12(b). Moreover, the effect of the
presence of an open bay was evaluated, as in Fig. 12(c). Aluminumwas used,E = 75GPa, ν = 0.33 and
ρ = 2770 Kg/m3. L9 elements were used to discretize the cross-section. A vertical harmonic load was
applied at y = 1.996mon the second longeron,F = 1000N andω = 3 rad/s. Themodal superposition
methodwas used to compute the time-dependent response. Table 4 shows the transverse displacements
obtained via classical models and the CW. Figure 13 shows the time-dependent displacement of the
leading edge and the trailing edge of the configurations A and C.
The results suggest that

• Classical and CW models provide same results for the configuration A.

• In B and C, local effects take place and torsion is more evident. Both behaviors make the dif-
ferences between classical and CW models higher.
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(a) Configuration A : Complete Wing (b) Configuration B : Skin Only (c) Configuration C : Open Bay

Fig. 12: Wing configurations.

Table 4: Maximum and minimum uz displacement (mm) at the tip of the wing obtained by means of
different theories [77].

Point EBBT TBT LE

Configuration A

DOFs 84 140 24864

Leading Edge uzmax
6.036 6.045 5.711

uzmin
−6.183 −6.198 −5.866

Trailing Edge uzmax
6.036 6.045 6.102

uzmin
−6.183 −6.198 −6.261

Configuration B

DOFs 84 140 14616

Leading Edge uzmax
8.591 8.593 8.211

uzmin
−8.696 −8.711 −8.277

Trailing Edge uzmax
8.591 8.593 9.213

uzmin
−8.696 −8.711 −9.299

Configuration C

DOFs 84 140 24450

Leading Edge uzmax
8.319 8.318 7.690

uzmin
−7.879 −7.889 −7.253

Trailing Edge uzmax
8.319 8.318 9.084

uzmin
−7.879 −7.889 −8.594

Damaged Beam A cantilever I-beam was considered. The beam length is 1 m, the height and
width of the cross-section are 0.1 m, and the thickness of the flanges is 0.002 m. The material is
isotropic; E = 75 GPa, ν = 0.33, and ρ = 2700 Kg/m3. Various damage distributions along the cross-
section were employed, as shown in Fig. 14 and Table 5. The damage was introduced along the 10%
of the length, from the root onwards. d indicates the degradation rate of the Young modulus, that is,
Ed = d × E. Figure 15 shows the first five frequencies of the beam. Classical models, TE, and

Table 5: Damage distribution above the cross-section of the I-beam.
A B C D E

Set 1, d = 0.5 0.7 0.8 0.6 0.9
Set 2, d = 0.1 0.7 0.1 0.6 0.9
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(b) Configuration C

Fig. 13: Time-dependent transverse displacement of the wing at the tip for various theories.

Fig. 14: Cross-section of the I-beam.

(a) Set 1 (b) Set 2

Fig. 15: First five natural frequencies of the I-beam [83].

LE were used. Moreover, a shell model was exploited for comparison purposes. LE and shell provide
the same results. Classical models are inadequate because the first five modes of both structures have
either bending-torsion couplings of severe shell-like phenomena, as shown in Fig. 16. The presence
of damage introduces local phenomena that cannot be detected by classical models. TE models can
deal with such phenomena but with high order expansions (N > 7).
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Fig. 16: Fifth mode of the I-beam, set 2.

Damaged Fiber/Matrix Cells The CW can be used to model fiber/matrix cells as shown in Fig.
17. Such a modeling approach could be used locally or in a multiscale scenario to have very accurate
stress fields with low computational costs. This section shows the results of the free vibration analysis
of a cell via different CW models and 3D solids. The cell length is 40 mm; the height is 0.6 mm, and

Fig. 17: Component-Wise model of a laminated plate.

the width is 0.8mm. One end of the structure is clamped. A 0/90/0 lamination was considered. Figure
18 shows the four modeling approaches adopted. Fibers were modeled with a circular cross-section,
where the diameter is equal to 0.2 mm. Fibers are orthotropic, with EL = 202.038 GPa, ET = EZ =
12.134 GPa, GLT = GLZ = 8.358 GPa, GTZ = 47.756 GPa, νLT = νLZ = 0.2128 und νTZ = 0.2704.
The matrix is made of an isotropic material, with E = 3.252 GPa and ν = 0.355. Layer properties are
orthotropic and are as the following: EL = 159.380 GPa, ET = EZ = 14.311 GPa,GLT =GLZ = 3.711
GPa, GTZ = 5.209 GPa, νLT = νLZ = 0.2433 und νTZ = 0.2886. The density, ρ, is 1300 kg/m3, 1500
kg/m3 and 1555 kg/m3 are adopted for the matrix, layer, and fiber, respectively. Mixture rules were
used. The bottom layer was damaged along the first 10% of the span. The damage was modeled by
the degradation of Young and shear moduli.
Table 6 shows the first five natural frequencies of the structure for various damage levels. CWmodels
obtained through LEs were compared to solid FEmodels (Abaqus). Bending and torsional modes were
considered. The total amount of degrees of freedom (DOFs) for each model is given in the last row.
A good match between the two models was found.
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(a) Model 1: the three layers of the
structure are the components of the
CW approach

(b) Model 2: the top and middle lay-
ers and the fibers and matrices of the
bottom layer are the components of
the CW approach

(c) Model 3: the middle layer and
the fibers and matrices of the top and
bottom layers are the components of
the CW approach

(d) Model 4: only one fiber-matrix
cell is inserted in CW model

Fig. 18: Various modeling approaches for the laminate.

.
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Table 6: First five natural frequencies (Hz).
Model 1

d = 0.1 d = 0.5 d = 0.9 d = 1.0

CW Solid CW Solid CW Solid CW Solid

Mode 1 420.49b 412.45b 568.05b 562.66b 607.25b 601.84b 613.01b 607.56b

Mode 2 609.17b 603.90b 657.13b 651.82b 687.32b 681.81b 693.29b 687.75b

Mode 3 3248.2b 3211.4b 3629.3b 3597.1b 3776.3b 3744.1b 3800.2b 3767.8b

Mode 4 3985.1b 3954.2b 4132.6b 4101.0b 4246.4b 4214.0b 4271.0b 4238.5b

Mode 5 8169.3t 7903.9t 8743.2t 8503.6t 8964.4t 8724.0t 9000.8t 8759.7t

DOFs 5859 75789 5859 75789 5859 75789 5859 75789

Model 2

Mode 1 409.74b 458.34b 557.89b 589.92b 596.51b 628.08b 602.15b 606.92b

Mode 2 599.46b 624.55b 648.81b 671.44b 678.95b 701.59b 684.86b 687.77b

Mode 3 3144.1b 3412.1b 3512.2b 3764.6b 3653.3b 3908.4b 3676.1b 3766.5b

Mode 4 3941.2b 4086.9b 4094.4b 4235.6b 4209.3b 4350.8b 4233.8b 4254.5b

Mode 5 7599.4t 9046.3t 8084.4t 9738.6t 8290.0t 9984.4t 8324.7t 10187t

DOFs 16275 92346 16275 92346 16275 92346 16275 92346

Model 3

Mode 1 417.06b 420.13b 563.22b 566.17b 601.91b 604.98b 607.58b 608.44b

Mode 2 605.38b 608.16b 653.52b 654.90b 683.2b 684.66b 689.10b 687.67b

Mode 3 3195.7b 3238.8b 3568.7b 3618.1b 3713.89b 3764.0b 3737.5b 3773.7b

Mode 4 3968.3b 3976.9b 4115.6b 4124.3b 4227.91b 4238.2b 4252.1b 4244.0b

Mode 5 7903.3t 8612.5t 8403.6t 9303.5t 8619.94t 9536.0t 8656.7t 9497.5t

DOFs 9765 268440 9765 268440 9765 268440 9765 268440

Model 4

Mode 1 420.11b 436.18b 567.41b 577.96b 606.50b 616.97b 612.24b 612.01b

Mode 2 608.85b 616.76b 656.61b 664.37b 686.70b 694.57b 692.66b 692.12b

Mode 3 3244.21b 3318.8b 3624.74b 3689.9b 3771.46b 3836.4b 3795.3b 3794.7b

Mode 4 3982.42b 4030.7b 4129.66b 4178.7b 4243.23b 4293.1b 4267.8b 4266.6b

Mode 5 8171.29t 8238.5t 8745.96t 8837.0t 8966.89t 9061.1t 9003.2t 9106.2t

DOFs 11811 60282 11811 60282 11811 60282 11811 60282

(∗): b, t refer to bending and torsional mode, respectively.

Conclusion

This work has presented the Component-Wise approach for the structural modeling of civil, aerospace
and composite structures. The Carrera Unified Formulation has been briefly introduced together with
its extensions to the CW. The main features of CW are the following:

• 1D CUF models are used as structural models. In particular, Lagrange expansions (LE) are used
to define the displacement field above the cross-section. 1D CUF models can be refined to an
arbitrary extent and can be used to analyse 2D and 3D structures as well.
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• No artificial, mathematical lines and surfaces are needed. The problem unknowns are, in fact,
placed on the physical surface of the 3D structure.

• No homogenization techniques of the material characteristics nor interface techniques of differ-
ent components are needed.

Particular attention has been paid to the analysis of multi-component structures in which 1D, 2D and
3D components have beenmodeled via 1D finite elements only.Moreover, preliminary analyses aimed
at the multiscale analysis of composite structures have been presented. The results have confirmed the
enhanced capabilities of the CW in terms of 3D-like accuracies and low computational costs.
The CW approach may have interesting future extensions due to its inherent advanced capabilities.
In particular, the CW may be extended to many of those problems in which very accurate 3D stress
fields are needed but are often difficult to deal with due to extremely high computational costs. Typical
examples are the following:

• Damage and progressive failure analyses.

• Multiscale analyses.

• Impact problems.

• Health-monitoring.

• Biomedical fluid-structure interaction problems.
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