
Abstract

Many engineering structures can be seen as multicomponent structures. Typical exam-
ples of such structures are aircraft wings and fibre-reinforced composites. The former
are typically composed of skins, spars, stringers and ribs.The latter are composed by
plies made of fibres and matrices. Models built by means of an arbitrary combination
of different components lead to a component-wise (CW) analysis. The present chap-
ter presents an innovative CW approach based on the one-dimensional Carrera unified
formulation (CUF). The CUF has been developed recently, different classes of mod-
els are available and, in this work, Taylor-like (TE) and Lagrange-like (LE) elements
were adopted. Different numerical examples are proposed, including aircraft struc-
tures, composite laminates and typical buildings from civil engineering. Comparisons
with results from solid and shell finite elements are given. It is concluded that the
present CW approach represents a reliable and computationally cheap tool which can
be exploited for many types of structural analyses.

Keywords: refined beam theories, finite elements, unified formulation,composites,
reinforced shell structures, civil engineering structures, component-wise.

1 Introduction

Beam theories are important tools for structural analysts. Interest in beam models is
mainly as a result of their simplicity and their low computational costs when compared
to two-dimensional (plate or shell) or three-dimensional (solid) models. The classical
and best-known beam theories are those by Euler [1], hereinafter referred to as EBBT,
and Timoshenko [2,3], hereinafter referred to as TBT. The former does not account for
transverse shear deformations. The latter foresees a uniform shear distribution along
the cross-section of the beam. These models work properly when slender compact
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homogeneous structures are considered in bending. The relevance of a beam theory
increases to a great extent if higher-order models are developed to which plate or shell
capabilities can be assigned, such as those in [4] and [5].

This work is embedded in the framework of the one-dimensional Carrera unified
formulation (CUF) for beam structures. The CUF is a hierarchical formulation which
considers the order of the theory as an input of the analysis.This allows us to deal with
a wide variety of problems with no need forad hocformulations. In fact, the governing
equations are expressed in terms of a few ’fundamental nuclei’ whose form does not
depend on the order of the introduced approximations. According to the latest devel-
opments on CUF, Lagrange-type polynomials are used to interpolate the displacement
field above the cross-section of the beam [6]. The choice of this kind of expansion
function leads us to have displacement variables only. Three- (L3), four- (L4), and
nine-point (L9) polynomials are considered in the framework of CUF; this leads to
linear, quasi-linear (bilinear), and quadratic displacement field approximations over
the beam cross-section. More refined beam models are implemented by introducing
further discretisations over the beam cross-section in terms of implemented elements.
The resulting one-dimensional models can deal withcomponent-wise(CW) analysis
of multicomponent structures.

Several structures can be considered as multicomponent structures, such as aero-
nautical structures, fibre-reinforced composites and civil buildings. The former are
essentially reinforced thin shells, composed by three maincomponents: panels, lon-
gitudinal stiffeners and ribs. Many different approaches for the analysis of aircraft
structures were developed in the first half of the last century. These are discussed in
major reference books [7, 8] and more recently in [9]. Resulting from the advent of
computational methods, mostly finite element method (FEM),the analysis of complex
aircraft structures continued to be carried out using a combination of solids (three-
dimensional), plates/shells (two-dimensional) and beams(one-dimensional). Nowa-
days FEM models with a number of unknowns (degrees of freedom, DOFs) close to
106 are widely used in common practise. The possible manner in which stringers, spar
caps, spar webs, panels, ribs are introduced into FE mathematical models is part of the
knowledge of structural analysts. A short discussion of this issue follows. Satsangi
and Murkhopadhyay [10] used8-node plate elements assuming the same displace-
ment field for stiffeners and plates. Kolli and Chandrashekhara [11] formulated an FE
model with9-node plate and3-node beam elements. Recently, Thinh and Khoa [12]
have developed a new 9-node rectangular plate model to studythe free vibrations of
shell structures with arbitrary oriented stiffeners. It isoften necessary to model stiff-
eners out of the plate or shell element plane. In this case beam nodes are connected
to the shell element nodes via rigid fictitious links. This methodology presents some
inconsistencies. The main problem is that the out-of-planewarping displacements in
the stiffener section are neglected and the beam torsional rigidity is not correctly pre-
dicted. Several solutions have been proposed in the literature to overcome this issue.
For instance, V̈orös [13, 14] proposed a procedure to model the connection between
the plate or shell and the stiffener where the shear deformation of the beam is neglected
and the formulation of the stiffener is based on the well-known Bernoulli-Vlasov[15]
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theory. In order to maintain the displacement compatibility between the beam and
the stiffened element, a special transformation was used, which included torsional-
bending coupling and the eccentricity of internal forces between the stiffener and the
plate elements. In this chapter, a novel approach to the analysis of aircraft structures
is proposed. The present CW method deals with shells and stiffeners by means of a
unique one-dimensional formulation, with no need for the introduction of fictitious
links to connect beam and shell elements.

As far as composite structures are concerned, many techniques are available to
compute accurate stress/strain fields in the various components of a laminated struc-
ture (i.e. fibres, matrices and layers); these techniques are briefly discussed hereafter.
The natural manner of refining the analysis of one- and two-dimensional components
consists of using three-dimensional solid finite elements.These elements can be em-
ployed to discretise single components (fibres and matrices) or to directly model the
layer of a laminated structure; fibres and matrices can be modeled as independent
elements or they can be homogenised to compute layer properties. Because of the
limitations on the aspect ratio of three-dimensional elements and the high number
of layers used in real applications, computational costs ofa solid model can be pro-
hibitive. Classical theories which are known for traditional beam and plate or shell
structures have been improved for application to laminates. There are many con-
tributions based on different approaches: higher-order models [16, 17], zig-zag the-
ories [18–21] and layer-wise (LW) approaches [22–24]. So-called global-local ap-
proaches have also been developed by exploiting the superposition of equivalent sin-
gle layer models (ESL) and LW [25], or by using the Arlequin method to combine
higher- and lower-order theories [26, 27]. Many studies on multiscale problems in
composites have recently been conducted as in [28–33]; one of the most important re-
sults is that “processes that occur at a certain scale governthe behavior of the system
across several (usually larger) scales” [34]. This result implies that the development
of analysis capabilities involving many scale levels is necessary in order properly to
understand multi-scale phenomena in composites. However,the most critical issues
of many multiscale approaches proposed in literature are related to the high compu-
tational costs required (in some cases hundreds of million of degrees of freedom) and
the need for material properties at nano-, micro- and macro-scale. These aspects can
affect the reliability and applicability of these approaches. In this chapter, applications
of the CW method to the analysis of composite structures are shown. CW models are
able separately to model each typical component of a composite structure by means
of a unique one-dimensional formulation. Moreover, in a given model, different scale
components can be used simultaneously, that is, homogenised laminates or laminae
can be interfaced with fibres and matrices. Such a model couldbe seen as a ‘global-
local’ model since it can be used either to create a global model by considering the
full laminate or to obtain a local model to detect accurate strain or stress distribu-
tions in those parts of the structure which could be most likely affected by failure. In
other words, the present modeling approach allows us to obtain progressively refined
models up to the fibre and matrix dimensions.

In the following a brief overview of CUF is provided and the CW approach is dis-
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cussed. Then static and free vibration analysis of a number of structures is presented,
including composite laminates, typical aircraft structures, and civil engineering build-
ings. The results by CW models are compared to classical beam theories, refined
one-dimensional models (Taylor-expansion-based CUF models), solid and shell FE
models from a commercial code, and analytical solutions when available. Finally the
main conclusions are outlined.

2 Preliminaries

The adopted coordinate frame is presented in Figure 1. The beam boundaries overy
are0 ≤ y ≤ L. The displacement vector is:

x

z

y

W

Figure 1: Coordinate frame of the beam model

u(x, y, z) =
{

ux uy uz

}T
(1)

The superscript ”T ” represents the transposition operator. Stress,σ, and strain,ǫ,
components are grouped as follows:

σp =
{
σzz σxx σzx

}T
, ǫp =

{
ǫzz ǫxx ǫzx

}T

σn =
{
σzy σxy σyy

}T
, ǫn =

{
ǫzy ǫxy ǫyy

}T (2)

The subscript “n” stands for terms lying on the cross-section, while “p” stands for
terms lying on planes which are orthogonal toΩ. Linear strain-displacement relations
are used:

ǫp = Dpu
ǫn = Dnu = (DnΩ +Dny)u

(3)

With:

Dp =




0 0 ∂
∂z

∂
∂x

0 0
∂
∂z

0 ∂
∂x


 , DnΩ =




0 0 0

0 ∂
∂x

0

0 ∂
∂z

0


 , Dny =




0 ∂
∂y

0
∂
∂y

0 0

0 0 ∂
∂y


 (4)
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The Hooke law is exploited:
σ = Cǫ (5)

According to Equation (2), the previous equation becomes:

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn
(6)

whereC̃pp, C̃pn, C̃np, andC̃nn are the material coefficient matrices whose explicit
expressions are

C̃pp =




C̃11 C̃12 0

C̃12 C̃22 0

0 0 C̃44


 , C̃pn = C̃

T

np =




0 C̃16 C̃13

0 C̃26 C̃23

C̃45 0 0


 ,

C̃nn =




C̃55 0 0

0 C̃66 C̃36

0 C̃36 C̃33




(7)

Coefficients [̃C]ij depend on Young’s and Poisson’s moduli as well as on the fibre
orientation angle,θ, that is graphically defined in Figure 2 where ‘1’, ‘ 2’, and ‘3’
represent the cartesian axes of the material. For the sake ofbrevity, the expressions of
coefficients [̃C]ij are not reported here, but can be found in the books by [35] or [36].

Figure 2: Fibre orientation angle

3 Unified finite element formulation

In the framework of the Carrera unified formulation (CUF), the displacement field is
the expansion of generic functions,Fτ :

u = Fτuτ , τ = 1, 2, ....,M (8)
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whereFτ vary above the cross-section.uτ is the displacement vector andM stands
for the number of terms of the expansion. According to the Einstein notation, the re-
peated subscript,τ , indicates summation. Taylor-type expansions have been exploited
in previous works by [5,37–43]. The Euler-Bernoulli (EBBT) andTimoshenko (TBT)
classical theories are derived from the linear Taylor-typeexpansion. Lagrange poly-
nomials are herein used to describe the cross-section displacement field. Three-, L3,
four-, L4, and nine-point, L9, polynomials are adopted. L3 polynomials are defined
on a triangular domain which is identified by three points. These points define the
element that is used to model the displacement field above thecross-section. Sim-
ilarly, L4 and L9 cross-section elements are defined on quadrilateral domains. The
isoparametric formulation is exploited. In the case of the L3 element, the interpola-
tion functions are given by [44]:

F1 = 1− r − s F2 = r F3 = s (9)

wherer ands belong to the triangular domain defined by the points in Table1.

Point rτ sτ
1 0 0
2 1 0
3 0 1

Table 1: L3 cross-section element point natural coordinates

Figure 3(a) shows the point locations in actual coordinates. The L4 element inter-
polation functions are given by:

Fτ =
1

4
(1 + r rτ )(1 + s sτ ) τ = 1, 2, 3, 4 (10)

wherer ands vary from−1 to+1. Figure 3(b) shows the point locations and Table 2
reports the point natural coordinates.

Point rτ sτ
1 −1 −1
2 1 −1
3 1 1
4 −1 1

Table 2: L4 cross-section element point natural coordinates

In the case of a L9 element the interpolation functions are given by:

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s

2 − s sτ )(1− r2) + 1

2
r2τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(11)
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(a) Three-point element, L3

1 2

34

(b) Four-point element, L4
7

1

2

3

4

5
6

8

9

(c) Nine-point element, L9

Figure 3: Cross-Section elements in actual geometry

wherer and s from −1 to +1. Figure 3(c) shows the point locations and Table 3
reports the point natural coordinates. The displacement field given by an L4 element
is:

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ F4 ux4

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4

uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(12)

whereux1
, ..., uz4 are the displacement variables of the problem and they represent the

translational displacement components of each of the four points of the L4 element.

Point rτ sτ
1 −1 −1
2 0 −1
3 1 −1
4 1 0
5 1 1
6 0 1
7 −1 1
8 −1 0
9 0 0

Table 3: L9 cross-section element point natural coordinates
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The cross-section can be discretised by means of several L-elements. Figure 4 shows
the assembly of two L9 elements which share a common edge and three points.

z

x

Figure 4: Two assembled L9 elements

The discretization along the beam axis is conducted via a classical finite element
approach. The displacement vector is given by:

u = NiFτqτi (13)

whereNi stands for the shape functions andqτi for the nodal displacement vector:

qτi =
{
quxτi

quyτi
quzτi

}T
(14)

For the sake of brevity, the shape functions are not reportedhere. They can be found
in many books, for instance in [45]. Elements with four nodes(B4) are herein formu-
lated, that is, a cubic approximation along they axis is adopted. It has to be highlighted
that the adopted cross-section displacement field model defines the beam theory. It is
therefore possible to deal with linear (L3), bilinear (L4),and quadratic (L9) beam the-
ories. Further refinements can be obtained by adding cross-section elements, in this
case the beam model will be defined by the number of cross-section elements used.
The choice of the cross-section discretization (i.e. the choice of the type, the number
and the distribution of cross-section elements) is completely independent of the choice
of the beam finite element to be used along the beam axis. The present formulation has
to be considered as an one-dimensional model since the unknowns of the problem,i.e.
the nodal unknowns, vary along the beam axis whereas the displacement field of the
beam is axiomatically modeled above the cross-section domain. The introduction of
the Lagrange-like discretization above the cross-sectionallows us to deal with locally
refinable one-dimensional models having only displacementvariables.

The stiffness matrix and the mass matrix of the elements and the external load-
ings, which are consistent with the model, are obtained via the principle of virtual
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displacements:

δLint =

∫

V

(δǫTpσp + δǫTnσn)dV = δLext − δLine (15)

whereLint stands for the strain energy, andLext is the work of the external loadings,
andδLine is the work of the inertial loadings.δ stands for the virtual variation. The
virtual variation of the strain energy is rewritten using Equations (3), (6) and (13):

δLint = δqT
τiK

ijτsqsj (16)

whereK ijτs is the stiffness matrix in the form of the fundamental nucleus. In a com-
pact notation, it can be written as:

K
ij τ s = I

ij

l ⊳
(
D

T
np Fτ I

)[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
+

(
D

T
p Fτ I

)[
C̃pp

(
Dp Fs I

)
+ C̃pn

(
Dnp Fs I

)]
⊲ Ω +

I
ij,y
l ⊳

[ (
D

T
np Fτ I

)
C̃nn +

(
D

T
p Fτ I

)
C̃pn

]
Fs ⊲ Ω IΩ y +

I
i,y j

l IΩ y ⊳ Fτ

[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
⊲ Ω +

I
i,y j,y
l IΩ y ⊳ Fτ C̃nn Fs ⊲ Ω IΩ y

(17)

where:

IΩ y =




0 1 0
1 0 0
0 0 1


 ⊳ . . . ⊲ Ω =

∫

Ω

. . . dΩ (18)

(
I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)
=

∫

l

(
Ni Nj, Ni Nj,y

, Ni,y
Nj, Ni,y

Nj,y

)
dy (19)

It should be noted that no assumptions on the approximation order have been made.
It is therefore possible to obtain refined beam models without changing the formal
expression of the nucleus components. This is the key-pointof CUF which permits,
with only nine FORTRAN statements, implementation of any-order beam theories.
The shear locking is corrected through the selective integration (see [45]). The line
and surface integral computation is numerically performedby means of the Gauss
method. The assembly procedure of the Lagrange-type elements is analogous to the
one followed in the case of two-dimensional elements. The procedure keypoints are
briefly listed:

1. The fundamental nucleus is exploited to compute the stiffness matrix of each
cross-section element of a structural node. If an L4 elementis considered, this
matrix will have12× 12 terms.

2. The stiffness matrix of the structural node is then assembled by considering all
the cross-section elements and exploiting their connectivity.
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3. The stiffness matrix of each beam element is computed and assembled in the
global stiffness matrix.

The variationally coherent loadings vector is derived in the case of a generic concen-
trated loadP:

P =
{
Pux

Puy
Puz

}T
(20)

Any other loading condition can be similarly treated. The virtual work due toP is:

δLext = PδuT (21)

The virtual variation ofu in the framework of CUF is:

δLext = FτPδuT
τ (22)

By introducing the nodal displacements and the shape functions, the previous equation
becomes:

δLext = FτNiPδqT
τi (23)

This last equation permits us to identify the components of the nucleus which have to
be loaded, that is, it leads to the proper assembling of the loading vector by detecting
the displacement variables that have to be loaded.

The virtual variation of the work of the inertial loadings is:

δLine =

∫

V

ρδuT üdV (24)

whereρ stands for the density of the material, andü is the acceleration vector. Equa-
tion (24) is rewritten using Equation (13):

δLine = δqT
τi

∫

l

NiNjdy

∫

Ω

ρFτFsdΩq̈sj = δqT
τiM

ijτsq̈sj (25)

whereM ijτs is the fundamental nucleus of the mass matrix. Its components are:

M ijτs
xx = M ijτs

yy = M ijτs
zz = ρ

∫
l
NiNjdy

∫
Ω
FτFsdΩ

M ijτs
xy = M ijτs

xz = M ijτs
yx = M ijτs

yz = M ijτs
zx = M ijτs

zy = 0
(26)

The imposition of constraints can be carried out by considering each of the three
degrees of freedom of cross-section element points independently. In other words, a
constraint can be either imposed on the whole cross-sectionor on an arbitrary number
of cross-section points.
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TE model:
N=1 (9 DOFs)
...
N=3 (30 DOFs)
...

�

�

�

�

LE model,
1x1 L4 discretization
(12 DOFs)

LE model,
1x2 L4 discretization
(18 DOFs)

LE model,
2x2 L4 discretization
(27 DOF)

Figure 5: Differences between the TE and LE models

4 The component-wise approach

The refined TE models are characterised by degrees of freedom(displacements and
N-order derivatives of displacements) with a correspondence to the axis of the beam
(see Figure 5). The expansion can also be made by using only pure displacement
values,e.g. by using Lagrange polynomials. The resulting LE can be used for the
whole cross-section or can be introduced by dividing the cross-section into various
sub-domains (see Figure 5). This characteristic allows us separately to model each
component of a structure. Figure 6 shows the CW approach for a four-stringer wing
box, whose components are modeled simultaneously using LE cross-sectional ele-
ments. Each component is considered with its own geometrical and material charac-
teristics. For instance, in the case of wing structures, LE expansions can adopted for
each wing section component (spars, stringer, panels), including ribs, as in Figure 6.
The resulting approach is denoted as component-wise since LE was used to identify
displacement variables in each structural component. Thismethodology permits us to
tune the capabilities of the model by 1. choosing which component requires a more
detailed model; 2. setting the order of the structural modelto be used.

Mid-span
cross-section

assembled

1D CUF: L-elements
discretizing the cross-sections of

each component

Component-wise
approach

Reinforced-shell
structure

Figure 6: Component-wise approach to simultaneously model panels, stringers
and ribs of wing structures
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Moreover, through the CW approach FE mathematical models canbe built by only
using physical surfaces; artificial lines (beam axes) and surfaces (plate or shell refer-
ence surfaces) are no longer used. This result can be obtained otherwise only using
solid finite elements.

For the results provided in this chapter, LE models were implemented by means of
four- (L4) and nine-point (L9) Lagrange-type polynomials over the cross-section of
isotropic and composite structures, including wing reinforced-shells and civil build-
ing. To clarify the CW capabilities of the LE model, Figure 7 isproposed. Figure
7 (a) shows the cross-section of a spar composed by three stringers and two panels.
The displacement field above the cross-section of each component of the spar is mod-
eled with one nine-point Lagrange polynomial. Finally, Figure 7 (b) shows a local
mode of the spar. Here, the vibration of a single component (the upper panel in this
specific case) is clearly evident.

(a) Three-stringer spar modeled with L9 ele-
ments.

(b) Modal shape involving a single component.

Figure 7: Component-wise capabilities of the LE models

5 Results and discussion

Several structural problems have been considered. To highlight the capabilities of
Lagrange-based models, preliminary results concern problems that can be otherwise
analysed only by means of solid elements. In particular, a cut hollow-square cross-
section is proposed as a first assessment, then the possibility of dealing with localised
constraints is shown. Afterwards, attention is given to thecomponent-wise capabilities
of the LE models. First, CW models of composite structures areproposed, including
a composite spar and a cross-ply laminate. Subsequently, the application of the CW
approach to the analysis of reinforced-shell wing structures is discussed. Finally, the
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capabilities of the CW models in dealing with a simplified complete aircraft and civil
buildings are shown. Comparisons of the results with analytical models and commer-
cial finite element codes are provided.

5.1 Open square cross-section

An open square cross-section beam made of isotropic material was firstly considered.
The material data are: the Young modulus,E, is equal to75 [GPa]; the Poisson ratio,
ν, is equal to0.33. The cross-section geometry is shown in Figure 8.

Figure 8: Open square cross-section

Both ends were clamped. The length-to-height ratio,L/h, is equal to20. The
height-to-thickness ratio,h/t, is equal to10 with h as high as1 [m]. Two opposite unit
point loads,±Fx, are applied at [0, L, −0.45]. Three L9 distributions were adopted
as shown in Figure 9.

Table 4 reports the horizontal displacement of the right-hand side loaded point
which undergoes a positive horizontal force. A solid model was used to validate the
results.

DOFs ux × 108 [m]
SOLID 131400 5.292
9 L9, Figure 20 a 5301 4.884
11 L9a, Figure 20 b 6417 4.888
11 L9b, Figure 20 c 6417 5.116

Table 4: Horizontal displacement,ux, at [0, L, −h/2]. Open hollow square beam
[6]
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(a) 9 L9 (b) 11 L9a (c) 11 L9b

Figure 9: Cross-Section L9 distributions for the hollow square beam

The free-tip deformed cross-section is shown in Figure 10. All the considered L9
distributions together with the solid model solution are reported. Figure 11 shows the
three-dimensional deformed configuration of the considered structure. The analysis
of the open hollow square beam highlights the following considerations.

1. The Lagrange-based beam model is able to deal with cut cross-sections.

2. This type of problem cannot be analysed with Taylor-type beam models since
the application of two opposite forces at the same point would imply null dis-
placements.

3. The most appropriate refined L9 distribution does not necessarily lie in the
proximity of load points. In this case, the most effective refinement was the
one placed above the vertical braces of the cross-section which undergo severe
bending deformation.

(a) 9 L9 (b) 11 L9a (c) 11 L9b

Figure 10: Deformed cross-sections of the hollow square beam [6]
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5.2 Localised constraints over the cross-section

The present Lagrange-based beam formulation offers the important possibility of deal-
ing with constraints that cannot be considered within classical and refined beam the-
ories that make use of Taylor-type expansions. Beam model constraints usually act
above the whole cross-section. In the framework of the present approach, each of
the three degrees of freedom of every Lagrange point of the beam can be constrained
independently. This means that the cross-section can be partially constrained.

Figure 11: Three-dimensional deformed configuration of thehollow square beam.
11 L9b [6]

A C-section beam was analysed. The structure is made of the same isotropic ma-
terial as in the previous case. The cross-section geometry is shown in Figure 12.
The length-to-height ratio,L/h, is equal to20. The height-to-thickness ratio,h/t,
is as high as10 with h and b2 equal to1 [m], andb1 as high asb2/2. Constraints
were distributed along the bottom portions of the free-tip cross-sections as shown in
Figure 13. Two unitary point loads,Fz, were applied at [0, 0, 0.4] and [0, L, 0.4],
respectively. Both forces act along the negative direction.The L9 cross-section distri-
bution is shown in Figure 15. The loaded point vertical displacement,uz, is reported
in Table 5 and compared with the value obtained from the solidmodel. Figures 16 and
14 show two- and three-dimensional deformed configurations, respectively.
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Figure 12: C-Section geometry

DOFs uz × 108 [m]
SOLID 84600 −3.759
13 L9a, Figure 15 7533 −3.662

Table 5: Displacement of the loaded point of the C-section beam [6]

Figure 13: Three-dimensional
clamped point distribution on the
C-section beam

Figure 14: Three-dimensional de-
formed configuration of the C-section
beam [6]

The following conclusions can be made:

1. The results are in perfect agreement with those from solidmodels.

2. The proposed analysis has confirmed the possibility of dealing with partially
constrained cross-section beams that is offered by the present formulation.

3. The constraints can be arbitrarily distributed in the three-dimensional directions
as shown by the analysis of the C-section beam.
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Figure 15: L9 distribution above the
C-section,13 L9 Figure 16: Deformed cross-section of

the C-section beam.y = L [6]

5.3 Composite beams

As far as nonhomogeneous composite structures are concerned, the present compo-
nent-wise approach allows us to model each typical component of a composite struc-
ture through the one-dimensional CUF formulation. Figure 17provides a description
of a possible modeling approach.

Figure 17: Component-wise approach for layers, fibres and matrices

A four-layer plate is considered and, in top-to-bottom order, the components con-
sidered are the following: the first two layers, fibres and matrix of the third layer,
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the third fibre-matrix cell of the bottom layer and its remaining layer portions. Each
component is considered with its own geometrical and material characteristics. A
typical application of the component-wise method is based on the following analysis
approach:

1. For a given composite structure, structural analysis is first conducted via classi-
cal methods (i.e. equivalent single layer or layer-wise).

2. The most critical zones of the structures are detected (e.g. those zones where
stress values are critical).

3. The component-wise approach is then exploited for those critical portions in
order to obtain more precise stress fields with acceptable increments of compu-
tational costs.

Figure 18 shows the matrices assembly adopted in this chapter. Independently of the
choice of the components to model, both TE and LE can be used. However, using TE
to obtain CW models would imply the addition of further equations imposing interface
conditions. In the following, static analysis of cross-plylaminates and a composite
spar is carried out.

(a) TE (b) LE

Figure 18: TE and LE assembly schemes

5.3.1 Cross-ply laminate

This section deals with the structural analysis of a cantilevered laminated beam. The
geometry of this model is described in Figure 19. The length of the beam,L, is
40 [mm], the height (h) and the width (b) 0.6 [mm] and0.8 [mm] respectively. Fi-
bres were modeled with a circular cross-section, with a diameter, d, of 0.2 [mm].
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Figure 19: Geometry of the laminated plate

Four fibres per layer were considered. A point-load,Fz, was applied at[b/2, L, 0],
Fz = −50 [N ]. Fibres were considered orthotropic, withEL = 202.038 [GPa],
ET = Ez = 12.134 [GPa], GLT = 8.358 [GPa], GLz = 8.358 [GPa], GTz = 47.756
[GPa], νLT = 0.2128, νLz = 0.2128 andνTz = 0.2704. An isotropic matrix was
adopted, withE = 3.252 [GPa] andν = 0.355. Layer properties were the following:
EL = 159.380 [GPa], ET = Ez = 14.311 [GPa], GLT = 3.711 [GPa], GLz = 3.711
[GPa], GTz = 5.209 [GPa], νLT = 0.2433, νLz = 0.2433 andνTz = 0.2886. Fig-
ure 20 shows the modeling approaches considered for this analysis. Both TE (N = 4)
and LE were used for each model. InModel 1, the three layers of the structure were
used as the components of the CW approach. InModel 2, the middle layer and the
fibres and matrices of the top and bottom layers were considered as components. The
components ofModel 3are the top and middle layers and the bottom layer fibres and
matrices. InModel 4, only one single fibre-matrix cell was considered.

Model σA
XY σB

XY

1 1.579 0.363
2 0.512 0.641
3 0.513 0.660
4 1.569 0.716

Table 6: Shear stress,σxy [MPa], at two different points of the laminate, A
[0.8, 0, 0] and B[0.55, 0,−0.2], LE models [46]

Table 7 shows the transverse displacement of the loading point and the axial stress
at the center point of the third fibre of the bottom layer. Thisfibre is a component in
Models 2, 3 and4. Shear stress values are reported in Table 6 at two differentpoints,
A (matrix) and B (fibre). Shear stress distributions above the clamped cross-section
from LE models are given in Figure 21. Shear stress results are provided by means of
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(a) Model 1: the three layers of the structure
are the components of the CW approach

(b) Model 2: the middle layer and the fibres
and matrices of the top and bottom layers
are the components of the CW approach

(c) Model 3: the top and middle layers and
the fibres and matrices of the bottom layer
are the components of the CW approach

(d) Model 4: only one fibre-matrix cell is
inserted in the CW model

Figure 20: Different modeling approaches for the laminate

LE models only, because LEs give higher accuracy for shear asseen in [24].

Model uz [mm] σyy × 10−2 [MPa] DOFs
TE

1 −9.630 −5.708 5445
2 −10.223 −7.564 5445
3 −9.921 −7.766 5445
4 −9.675 −7.295 5445

LE
1 −9.629 −5.758 1008
2 −9.927 −7.495 7344
3 −9.775 −7.418 9024
4 −9.666 −7.264 6192

Table 7: Transverse displacement, at[b/2, L, 0], and axial stress, at[0.5, 0,−0.2],
of the laminate [46]

The analysis of the results suggests the following:
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 21: Shear stress,σyx, distribution above the cross-section aty = 0, lami-
nated beam, LE models [46]

1. Stress fields are significantly affected by the choice of modeling approach. Very
different stress fields were detected depending on the choice of the components.
This was due to the fact that homogenised material characteristics were used for
layers whereas the characteristics of each component were adopted for fibres
and matrices.

2. The adoption of localised fibre-matrix components (restricted to a lamina in
Model 3 or to a fibre-matrix cell in Model 4) allows us to use simpler models
without considerably affecting the accuracy of the result if compared to more
cumbersome models. This means that if an accurate stress field is needed around
a given fibre, the use of fibre-matrix components can be limited to the fibre
location.

3. Displacement values are less influenced than stress fieldsby the choice of the
modeling approach.

5.3.2 Composite-type longeron

A beam made of composite materials, assembled with different parts, was considered
with the aim of analysing a typical simplified longeron structure for aerospace appli-
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cations. The cross-section geometry is shown in Figure 22, where several components
can be distinguished:

Figure 22: Composite longeron beam cross-section

1. the horizontal unidirectional, UD, top and bottom parts;

2. the foam made core;

3. the−45/45 vertical thin layers which coat the foam.

Table 8 shows the dimensions of the cross-section.

[m]
a 0.100
b 0.044
c 0.040
h 0.100
t 0.080

Table 8: Composite longeron cross-section dimensions

The length,L, of the beam is equal to1 [m]. The UD and the thin layers were made
of orthotropic material, which has the following characteristics: the Young modulus
along the longitudinal,EL, is equal to40 [GPa], and those along the transverse di-
rections are equal to4 [GPa]. The Poisson ratio,ν, is equal to0.25 , and the shear
modulus,G, is equal to1 [GPa]; the same Poisson and shear modulus values are
used in all directions. The foam core was modeled with an isotropic material with
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E equal to50 [MPa], and ν equal to0.25. It should be noted that the LE one-
dimensional formulation permits us to obtain a quite convenient description of the
cross-section subdomain; the adopted L9 distribution is shown in Figure 23. A unitary
point load was applied to the bottom surface at[b/2, L,−h/2] along thez-direction.
An MSC/NASTRANR© solid model was used for comparison purposes.

Figure 23: Cross-Section L9 distribution of the composite longeron,9× L9

Table 9 presents the vertical displacements of the loaded point obtained from using
the different models. The vertical displacement distribution above the cross-section is
given in Figure 24. The axial stress at[b/2, 0,−h/2] is presented in Table 10. The
following considerations can be made.

1. The detection of the correct displacement field as well as of the axial stress
requires the present LE model, since the Taylor one presentsa slow convergence
for increasing theory orders.

2. Classical models foresee constant displacement distributions above the cross-
section.

3. The Lagrange model is able to detect the three-dimensional solution, that is, the
three-dimensional solution is detected by means of the present one-dimensional
formulation.

4. The computational cost of the present one-dimensional model is much lower
than that of the solid model.

5.4 Reinforced-shell wing structures

Primary aircraft structures are essentially reinforced thin shells [7]. These are so-
called semimonocoqueconstructions which are obtained by assembling three main
components: skins (or panels), longitudinal stiffening members (including spar caps)
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uz × 10−6 [m] DOFs
Classical Beam Theories

EBBT −2.040 138
TBT −2.224 230

TE
N = 1 −2.246 414
N = 2 −2.286 828
N = 3 −2.376 1380
N = 4 −2.463 2070

LE
9 L9, Figure 23 −2.800 7866

MSC/NASTRANR©

SOLID −2.801 250000

Table 9: Loading point vertical displacement,uz, for the longeron model [24]

-2.245e-006

-2.24e-006

-2.235e-006

-2.23e-006

-2.225e-006

-2.22e-006

-2.215e-006

-2.21e-006

-2.205e-006

(a) TBT

-2.48e-006

-2.46e-006

-2.44e-006

-2.42e-006

-2.4e-006

-2.38e-006

-2.36e-006

-2.34e-006

(b) N = 4

-2.85e-006

-2.8e-006

-2.75e-006

-2.7e-006

-2.65e-006

-2.6e-006

-2.55e-006

-2.5e-006

-2.45e-006

(c) 9 L9

-2.8e-006

-2.75e-006

-2.7e-006

-2.65e-006

-2.6e-006

-2.55e-006

-2.5e-006

-2.45e-006

-2.4e-006

-2.35e-006

-2.3e-006

(d) Solid

Figure 24:uz-distribution above the free-tip cross-section of the composite
longeron via different one-dimensional models and solids [24]

and transversal stiffeners (ribs). The determination of stress or strain fields in these
structural components is of prime interest to structural analysts.
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σyy × 104 [Pa] DOFs
Classical Beam Theories

EBBT −0.113 138
TBT −0.113 230

TE
N = 1 −0.141 414
N = 2 −0.736 828
N = 3 −0.784 1380
N = 4 −0.813 2070

LE
9 L9, Figure 23 −1.625 7866

MSC/NASTRANR©

SOLID −1.776 250000

Table 10: Axial stress,σyy, at [c/2, 0, −h/2] for the longeron model [24]

The static analysis of a simple spar is considered in the following. TE and LE mod-
els are compared both with classical beam theories and solidelements of a commer-
cial code. Analytical results based on the simplifying assumptions of the semimono-
coque assembled components are provided. According to [7, 9] the internal loads in
a statically determinate reinforced-shell structure can be found by the use of static
equilibrium equations alone. In a statically indeterminate structure, additional equa-
tions along with the static equilibrium equations are necessary to find all the internal
stresses. We should impose compatibility conditions by means of the principle of
virtual displacements. This approach is hereafter referred to as the PS (pure semi-
monocoque) model. If EBBT is applied to the idealised semimonocoque assumptions
it is possible to reduce redundancy in statically indeterminate structures. This method
is hereafter referred to as BS (beam semimonocoque) model.

As far as free vibration analysis is considered, a three-stringer spar and a complete
aircraft wing are addressed. The attention is focused on thecapability of CW models
to detect both local (component-wise) and global modal shapes.

5.4.1 Two-stringer spar

The simple spar structure shown in Figure 25 was considered.Stringers were taken
to be rectangular for convenience, however their shape doesnot affect the validity
of the proposed analysis. The geometrical data are as follows: axial length,L = 3
[m]; cross-section height,h = 1 [m]; area of the spar caps,As = 0.9 × 10−3 [m2];
web thickness,t = 1 × 10−3 [m]. The whole structure is made of an aluminum alloy
material. The material data are: the Young modulus,E = 75 [GPa]; Poisson ratio,
ν = 0.33. The beam was clamped aty = 0 and a point load,Fz = −1× 104 [N ], was
applied at[0, L, 0].

The vertical displacement,uz, at the loaded point is reported in Table 11. Compo-
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s

Figure 25: Two-stringer spar

uz × 103 [m] P × 10−4 [N ] q × 10−4 [N/m] DOFs
MSC/NASTRANR©

SOLID −3.815 2.617 −1.036 76050
Analytical Methods

BS −2.671 3.192 −1.064 -
PS −3.059 3.192 −1.064 -

Classical Beam Theories
EBBT −1.827 1.993 −0.274 93
TBT −2.117 1.993 −0.274 155

TE
N = 3 −2.514 2.434 −0.665 930
N = 5 −2.629 2.350 −0.561 1953

CW
4 L9, Figure 26a −3.639 3.171 −1.034 2883
8 L9, Figure 26b −3.639 3.167 −1.035 4743

Table 11: Displacement values,uz, at the loaded point, axial load in the upper
stringer,P , at y = 0 and mean shear flow on the sheet panel,q, at

y =
L

2
, two-stringer spar [47]

nent-wise LE results are given in last two rows. These modelswere obtained by using
two different L9 cross-section distributions, as shown in Figure 26.

The third column in Table 11 quotes the number of the degrees of freedom for
each model. The analytical results related to BS and PS approaches are evaluated as
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(a)
4 L9

(b)
8 L9

Figure 26: Cross-section L9 distributions for the LE models of the two-stringer
spar

follows:

uzBS
=

FzL
3

3EI
, uzPS

=
FzL

3

3EI
+

FzL

AG
(27)

where I is the cross-section moment of inertia about thex-axis, G is the shear modulus
and A is the overall cross-section area. For this numerical example, stress fields are
evaluated in terms of axial loads in stringers and shear flowson webs, in order to
compare the results with classical analytical models. Table 11 reports the axial load in

the upper stringer,P , aty = 0 and the mean shear flow in the panel,q, aty =
L

2
. In

accordance with [9], for both BS and PS analytical models,P andq were evaluated as

P =
FzL

h
, q = −

Fz

h
(28)

whereh is the distance between the centers of the two stringers.

The variation in the axial stress and the shear stress versusthez-axis is presented
in Figures 27. The following considerations arise from the analyses.

1. Refined beam theories, especially LE, allows us to obtain the results of the solid
model (which is the most accurate and at the same time the mostcomputation-
ally expensive).

2. The number of degrees of freedom of the present models is significantly reduced
with respect to the MSC/NASTRANR© solid model.

3. Both MSC/NASTRANR© and higher-order CUF models, unlike analytical theo-
ries based on idealised stiffened-shell structures and classical one-dimensional
models, highlight the fact that the axial stress component,σyy is not linear ver-
susz and that the shear stress component,σyz, is not constant along the sheet
panel.
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(a) σyy vs. z atx = y = 0

(b) σyz vs. z atx = 0, y =
L
2

Figure 27: Axial stress,σyy, and shear stress,σyz, versus thez-axis, two-stringer
spar [47]

5.4.2 Three-stringer spar

The free vibration analysis of a longeron with three longitudinal stiffeners was carried
out. The geometry of the structure is shown in Figure 28.

The spar is clamped aty = 0. The geometrical characteristics are the following:
axial length,L = 3 [m]; cross-sectional height,h = 1 [m]; area of the stringers ,
As = 1.6 × 10−3 [m2]; panels’ thickness,t = 2 × 10−3 [m]; distance between the
intermediate stringer and thex-y plane,b = 0.18 [m]. The whole structure is made of
the same isotropic material as in the previous case.

The first fifteen natural frequencies are reported in Table 12, together with the num-
ber of the degrees of freedom for each model. The component-wise LE model was
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Figure 28: Three-stringer spar

EBBT TBT N = 1 N = 2 N = 3 N = 4 5 L9 SOLID
DOFs 93 155 279 558 930 1395 3813 62580

Mode1 3.24b 3.24b 3.24b 3.43b 3.35b 3.31b 3.46t 3.15b

Mode2 20.29b 20.28b 20.28b 16.70t 16.34t 16.13t 3.52b 3.55t

Mode3 56.81b 56.74b 56.74b 21.39b 20.97b 20.75b 3.76b 3.82b

Mode4 111.36b 108.81b 108.81b 55.25t 52.90t 51.70t 14.27s 13.30s

Mode5 117.60b 111.11b 111.11b 60.11b 59.23b 58.24b 16.73s 15.06s

Mode6 184.30b 183.57b 183.57b 108.19t 100.81t 97.87t 17.67s 16.33s

Mode7 275.94b 274.23b 269.29t 109.44b 105.55b 102.26b 21.17s 19.81s

Mode8 386.89b 383.36b 274.23b 117.79b 116.61b 113.20b 21.71t 21.49t

Mode9 439.21e 439.20e 383.36b 181.03t 165.23t 119.39s 22.95b 22.81b

Mode10 517.91b 455.17b 439.20e 194.59b 183.16s 161.07t 25.11s 24.07s

Mode11 622.84b 511.36b 455.17b 276.03t 197.98b 176.65s 25.73s 24.63s

Mode12 669.05b 658.20b 511.36b 290.25b 229.97s 189.01b 31.21s 29.69s

Mode13 830.95b 817.28b 658.20b 325.69s 248.76t 243.58t 37.92s 36.24s

Mode14 1104.56b 972.68b 807.88t 393.92t 290.54b 258.64s 45.79s 43.88s

Mode15 1317.62e 1055.78b 817.28b 406.78b 302.06s 281.59b 54.86s 51.64s

(*) b: bending mode; t: torsional mode; s: shell-like mode; e: extensional mode.

Table 12: First 15 natural frequencies[Hz] of the three-stringer spar [48]

obtained by discretising the cross-section with five L9 elements, one for each spar
component (stringers and webs)

The consistent correspondence between the CW model and the SOLID model was
further investigated by means of the modal assurance criterion (MAC), whose graphic
representation is shown in Figure 29. The MAC is defined as a scalar constant relating
the degree of consistency (linearity) between one modal andanother reference modal
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vector [49]. MAC takes on values from zero (representing no consistent correspon-
dence), to one (representing a consistent correspondence).
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Figure 29: MAC values, three-stringer spar [48]

Up to the 14th mode there is a good correspondence between the two models. Fur-
ther refinements of the LE model (i.e. adopting more L-elements to discretise the
cross-section of the longeron) should improve this correspondence. Figure 30 shows
some local modes computed with the CW model.

(a) Mode12, f12 = 31.21 Hz (b) Mode21, f21 = 84.66 Hz (c) Mode29,
f29 = 104.99 Hz

Figure 30: Local modes, five L9 (LE) model of the three-stringer spar [48]
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The following statements hold:

1. The classical beam theories and the linear (N = 1) TE model correctly detect
bending and extensional modes. No torsional mode are detected.

2. To detect the torsional and shell-like modes a higher thanfirst-order TE model is
necessary. However, very high expansion orders are needed to correctly predict
the frequencies of these modal shapes.

3. The CW model matches the solid FE solution with a significantreduction of the
computational costs. It should be noted that the component-wise models can
find typically shell-like modal shapes by means of the one-dimensional CUF.

5.4.3 Complete aircraft wing

The modal analysis of a complete aircraft wing is proposed. The cross-section of the
wing is shown in Figure 31.

X

Z

c

Figure 31: Cross-section of the wing

The NACA 2415 airfoil was used and two spar webs and four spar caps were added.
The airfoil has the chord,c, as equal as1 [m]. The length,L, along the span direction
is equal to6 [m]. The thickness of the panels is3 × 10−3 [m], whereas the thickness
of the spar webs is5 × 10−3 [m]. The whole structure is made of the same isotropic
material as in the previous cases. The wing was clamped at theroot. For the present
wing structure, two different configurations were considered. LetConfiguration A
be the wing with no transverse stiffening members. InConfiguration Bthe wing is
divided into three equal bays, each separated by a rib with a thickness of6×10−3 [m].

Table 13 shows the main modal frequencies of both the wing’s structural configu-
rations. In this table, the results obtained through the CUF models are compared to
those from classical beam theories and to those from SOLID models. In the last two
rows of Table 13, the frequencies of the first two shell-like modes are quoted. The
following considerations hold.

1. The bending modes of the wing are correctly detected by both the lower-order
and higher-order TE models.
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Configuration A
EBBT TBT N = 1 N = 2 N = 3 CW SOLID

DOFs 93 155 279 558 930 21312 186921
Global Modes

I Bendingx
∗

4.22 4.22 4.22 4.29 4.26 4.23 4.21
I Bendingz 22.10 21.82 21.82 21.95 21.87 21.76 21.69
II Bendingx 26.44 26.36 26.36 26.66 26.25 25.15 24.78
I Torsional - - 132.93 50.27 48.46 31.14 29.18
III Bendingx 73.91 73.35 73.35 73.99 71.64 59.26 56.12
II Bendingz 134.66 124.68 124.68 124.99 122.77 118.39 118.00

Local Modes
I Shell-like - - - - - 86.36 75.13
II Shell-like - - - - - 88.94 73.85

Configuration B
DOFs 84 140 252 504 840 23976 171321

Global Modes
I Bendingx

∗

4.12 4.12 4.12 4.19 4.17 4.14 4.12
I Bendingz 21.56 21.30 21.30 21.50 21.42 21.28 21.22
II Bendingx 25.71 25.63 25.63 26.00 25.61 25.00 24.92
I Torsional - - 131.24 49.57 47.48 39.45 39.22
III Bendingx 71.44 70.90 70.90 71.80 69.49 64.84 63.88
II Bendingz 131.11 121.49 121.49 122.23 120.06 115.76 115.40

Local Modes
I Shell-like - - - - - 85.61 75.01
II Shell-like - - - - - 91.54 78.61
∗ Bendingξ: bending mode along theξ-axis

Table 13: Global and local modal frequencies of the completeaircraft wing [48]

2. As revealed by the previous numerical examples, at least acubic expansion on
the displacement field (TEN = 3) is necessary to correctly detect the torsional
modes.

3. The CW LE models match the SOLID solutions: shell-like modes can be ob-
tained by means of beam elements.

4. The computational effort of a higher-order beam model is significantly lower
than the ones requested by solid models.

To deal with complex structures, such as the one considered in this section, the CW
models were included into a commercial software and the post-processing of the CW
model of the wing has been performed with MSC/PATRANR©. Two shell-like modes
evaluated by means of the CW model are shown in Figure 32 for theConfiguration A.
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(a) Mode 10 (89.35 Hz) (b) Mode 26 (142.91 Hz)

Figure 32: Shell-like modes of the wing (Configuration A) evaluated with the CW
model [48]

5.5 Dynamic response of a simplified aircraft model

The dynamic response of a simplified model of aircraft was considered in order to
investigate the capabilities of the present model in such ananalysis. The geometry
of the structure is shown in Figure 33. The geometrical shapeis a function of the
parametera, which is considered as equal as0.5 [m]. The structure has a constant
thickness of0.2 × a. The material considered is aluminium. Non constraints were
considered so the structure was free.

a

5a

5a

a

a

5a

3a

Figure 33: Geometry and beam axis of the TE model

Results from both TE and LE models are provided. In the TE modelof the air-
craft, a singular non-uniform cross-section beam is considered as shown in Figure 33.
The CW model is obtain exploiting multiple beam elements, each discretised with
an L9 cross-sectional Lagrange-element as shown in Figure 34. The first ten nat-
ural frequencies for fourth- and fifth-order TE models are reported in the first two
columns of Table 14. A comparison with respect to the resultsfrom the commer-
cial code MSC/NASTRANR© obtained using two-dimensional elements is given in the
third column. The results by the CW model are quoted in column four. In Figure 35
the first eight natural modes evaluated by means of the CW modelare shown. The re-
sults show that the analysis of a whole aircraft structure may be carried out by means
of higher order one-dimensional models.
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Figure 34: CW model of the aircraft exploiting multiple beam elements

TE4 TE5 SHELL LE
DOFs 2880 4032 6120 1845
1st 11.427 11.342 10.804 10.944
2nd 20.824 19.499 17.264 18.201
3rd 21.591 21.404 20.053 20.208
4th 51.448 51.137 50.372 50.398
5th 73.244 52.989 51.162 52.122
6th 62.246 59.476 51.307 52.389
7th 81.915 74.980 65.552 66.962
8th 74.791 74.612 69.942 70.633
9th 102.908 101.304 75.774 77.844
10th 88.310 87.790 87.436 89.572

Table 14: First ten natural frequencies[Hz] of the simplified aircraft model [50]

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

Figure 35: First eight modes of the aircraft evaluated by means of the LE model
[50]
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5.6 Civil engineering structures

Results from the free vibration analysis of civil structuresthrough CW models are
provided here. Two structural configurations were considered, as shown in Figure 36.
Configuration Ais a one-level structure composed by four square columns made of
isotropic steel material (elastic modulusE = 210 [GPa], densityρ = 7.5 × 103

[Kg/m3], Poisson ratio0.28) and a floor whit properties as shown in Figure 37. The
floor is made of a material whose properties are1/5 of those of the considered steel
alloy. Configuration Bis a three-level construction with four columns and three floors.
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(a) Configuration A
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(b) Configuration B

Figure 36: Civil structures

STEEL

1/5
STEEL

2
0
 c

m

5 m

5 m

Figure 37: Floor

The CW models were obtained with a combination of L9 elements above the cross-
sections. Results by CW analysis were compared to those from solid analysis by
MSC/NASTRANR©. Table 15 quotes the natural frequencies together with the number
of the degrees of freedom for both LE and solid models. Figure38 shows some modal
shapes of the considered civil structures evaluated through the CW models.

35



Configuration A Configuration B
CW SOLID CW SOLID

DOFs 3396 181875 6300 78975
Mode 1 9.43b 8.79b 3.63b 3.07b

Mode 2 9.43b 8.79b 3.63b 3.07b

Mode 3 13.86t 12.44t 5.32t 4.22t

Mode 4 23.07f 21.67f 10.64b 9.69b

Mode 5 36.80f 36.66f 10.64b 9.69b

Mode 6 36.80f 36.66f 15.60t 13.36t

Mode 7 40.59f 37.59f 16.45b 16.42b

Mode 8 72.41f 77.07f 16.45b 16.42b

∗ b: bending mode; t: torsional mode; f: floor mode

Table 15: Natural frequencies[Hz] of civil structures [51]

The following considerations are suggested.

1. Civil structures are clearly multicomponent structures and they can be analysed
by means of a one-dimensional CW formulation. In fact, both global and local
modes involving columns and floors are correctly detected byLE models.

2. CW models allow us to model the physical surfaces of each structural compo-
nent. This result is otherwise obtainable only with solid finite elements.

6 Conclusions

This chapter has presented a component-wise approach for the analysis of multicom-
ponent structures. The CW model has been obtained by employing the Carrera uni-
fied formulation, which puts at our disposal a very reliable formulation to deal with
higher-order beam theories. A number of structures have been considered, including
composites, simple and complex aircraft structures, and civil buildings. Static and
free vibration analyses have been conducted. The results obtained by means of the
CW models have been compared with those from refined TE models,with analytical
approaches, and solid and shell finite element models. The proposed CW approach
has shown its strength in dealing with several different structural problems. There are
several important features to be pointed out.

1. CW models provide three-dimensional solutions.

2. The computational cost of the present beam formulation isconsiderably lower
than those incurred for three-dimensional models.
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(a) Configuration A, mode 1 (b) Configuration A, mode 3 (c) Configuration A, mode 4

(d) Configuration B, mode 3 (e) Configuration B, mode 5 (f) Configuration B, mode 9

Figure 38: CW modal shapes of civil engineering structures [51]

3. The local refinement offered by Lagrange-based formulations plays a funda-
mental role in dealing with point loads in the presence of open thin-walled
cross-sections.

4. The classical beam constraining approach has been overcome since a three-
dimensional distribution of the boundary conditions can beobtained via the
present one-dimensional formulation. This implies the possibility of dealing
with partially constrained cross-section beams, that is, the possibility of consid-
ering boundary conditions which are obtainable by means of plate or shell and
solid models only.

5. The proposed CW approach offers significant improvements in detecting the
mechanical behavior of laminated structures in particularwhen stress fields
around fibre and matrix cells have to be accurately computed.A global-local
approach can be implemented easily since the same stiffnessmatrix is adopted
to model each component of the structure.

6. The present CW analysis appears to the authors to be the mostconvenient way,
in terms of both accuracy and computational costs, to capture the global and lo-
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cal (component-wise) physical behavior of multicomponentstructures, includ-
ing aeronautical structures and civil buildings.

7. The CW approach uses only physical surfaces to build FE mathematical models.
This characteristic of CW models is a unique feature that gives to this approach
clear advantages from a CAE/CAD point of view.

CW should also be employed for failure and damage analysis in future investigations.
It is important to underline that the present work deals withlinear analysis. However,
as far as failure and damage analyses are concerned, nonlinearities - both geometrical
and material - can play fundamental roles. The extension of CUF one-dimensional
models and CW to nonlinearities should be one of the future tasks to be undertaken.
Computational advantages from CUF one-dimensional can be even more evident in
a nonlinear scenario where iterative strategies are needed. Moreover, further work
should be directed to the development of CW models of fuselagestructures and com-
plete aircraft. Transient and gust response analysis will be performed, in the foresee-
able future, by means of CW models of wings. Finally, more representative examples
of civil structures should be considered. The possibilities offered by CW models could
open new scenarios and previously unattainable analysis could be carried out (walls,
doors and windows could be included to obtain CW models of complete buildings;
soil and foundation analysis could be performed).
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