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Abstract

Many engineering structures can be seen as multicompoineatiges. Typical exam-
ples of such structures are aircraft wings and fibre-reag@drcomposites. The former
are typically composed of skins, spars, stringers and fibs.latter are composed by
plies made of fibres and matrices. Models built by means ofhitrary combination
of different components lead to a component-wise (CW) amalyhe present chap-
ter presents an innovative CW approach based on the one-simnahCarrera unified
formulation (CUF). The CUF has been developed recently, rdiffeclasses of mod-
els are available and, in this work, Taylor-like (TE) and tagge-like (LE) elements
were adopted. Different numerical examples are proposetlyding aircraft struc-
tures, composite laminates and typical buildings froml @agineering. Comparisons
with results from solid and shell finite elements are givenis lconcluded that the
present CW approach represents a reliable and computdyichabp tool which can
be exploited for many types of structural analyses.

Keywords: refined beam theories, finite elements, unified formulatcmmposites,
reinforced shell structures, civil engineering strucsji@mmponent-wise.

1 Introduction

Beam theories are important tools for structural analysteerést in beam models is
mainly as a result of their simplicity and their low compiugatl costs when compared
to two-dimensional (plate or shell) or three-dimensiosalifl) models. The classical
and best-known beam theories are those by Euler [1], hdteimaferred to as EBBT,

and Timoshenko [2,3], hereinafter referred to as TBT. Thm&ardoes not account for
transverse shear deformations. The latter foresees arnmngioear distribution along
the cross-section of the beam. These models work propergnvglender compact
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homogeneous structures are considered in bending. Theneke of a beam theory
increases to a great extent if higher-order models are deedlto which plate or shell
capabilities can be assigned, such as those in [4] and [5].

This work is embedded in the framework of the one-dimengiQaarera unified
formulation (CUF) for beam structures. The CUF is a hieram@Harmulation which
considers the order of the theory as an input of the analyhis.allows us to deal with
a wide variety of problems with no need fad hocformulations. In fact, the governing
equations are expressed in terms of a few 'fundamental nudiese form does not
depend on the order of the introduced approximations. Atogrto the latest devel-
opments on CUF, Lagrange-type polynomials are used to iisgothe displacement
field above the cross-section of the beam [6]. The choiceisfkimd of expansion
function leads us to have displacement variables only. &h(ie3), four- (L4), and
nine-point (L9) polynomials are considered in the framéwol CUF; this leads to
linear, quasi-linear (bilinear), and quadratic displaeatrfield approximations over
the beam cross-section. More refined beam models are imptethey introducing
further discretisations over the beam cross-section mgef implemented elements.
The resulting one-dimensional models can deal wdmponent-wis€CW) analysis
of multicomponent structures.

Several structures can be considered as multicomponeictstes, such as aero-
nautical structures, fibre-reinforced composites and bwildings. The former are
essentially reinforced thin shells, composed by three roamponents: panels, lon-
gitudinal stiffeners and ribs. Many different approachessthe analysis of aircraft
structures were developed in the first half of the last cgntlihese are discussed in
major reference books [7, 8] and more recently in [9]. Resglfrom the advent of
computational methods, mostly finite element method (FEM) analysis of complex
aircraft structures continued to be carried out using a d¢oation of solids (three-
dimensional), plates/shells (two-dimensional) and begmns-dimensional). Nowa-
days FEM models with a number of unknowns (degrees of freed®s) close to
10° are widely used in common practise. The possible manner ichvgtringers, spar
caps, spar webs, panels, ribs are introduced into FE matteatraodels is part of the
knowledge of structural analysts. A short discussion of thsue follows. Satsangi
and Murkhopadhyay [10] usegtnode plate elements assuming the same displace-
ment field for stiffeners and plates. Kolli and Chandrasheklil] formulated an FE
model with9-node plate and-node beam elements. Recently, Thinh and Khoa [12]
have developed a new 9-node rectangular plate model to stedyee vibrations of
shell structures with arbitrary oriented stiffeners. loften necessary to model stiff-
eners out of the plate or shell element plane. In this case lmemles are connected
to the shell element nodes via rigid fictitious links. Thistho&lology presents some
inconsistencies. The main problem is that the out-of-plaagping displacements in
the stiffener section are neglected and the beam torsiadity is not correctly pre-
dicted. Several solutions have been proposed in the lilerdd overcome this issue.
For instance, 8ros [13, 14] proposed a procedure to model the connectiondagtw
the plate or shell and the stiffener where the shear defawmat the beam is neglected
and the formulation of the stiffener is based on the wellvin&ernoulli-Vlaso\15]



theory. In order to maintain the displacement compatbllietween the beam and
the stiffened element, a special transformation was uséd;haincluded torsional-
bending coupling and the eccentricity of internal forcesMeen the stiffener and the
plate elements. In this chapter, a novel approach to thesisalf aircraft structures
is proposed. The present CW method deals with shells andrstif§ by means of a
unique one-dimensional formulation, with no need for thieoduction of fictitious
links to connect beam and shell elements.

As far as composite structures are concerned, many tedsigre available to
compute accurate stress/strain fields in the various coergsrof a laminated struc-
ture (.e. fibres, matrices and layers); these techniques are brieftygsed hereafter.
The natural manner of refining the analysis of one- and twaedisional components
consists of using three-dimensional solid finite elemenhtsese elements can be em-
ployed to discretise single components (fibres and majrmet® directly model the
layer of a laminated structure; fibres and matrices can beetaddas independent
elements or they can be homogenised to compute layer piegpeBecause of the
limitations on the aspect ratio of three-dimensional eletsi@nd the high number
of layers used in real applications, computational cosis 6lid model can be pro-
hibitive. Classical theories which are known for traditibbhaam and plate or shell
structures have been improved for application to laminafEisere are many con-
tributions based on different approaches: higher-ordedeiso[16, 17], zig-zag the-
ories [18-21] and layer-wise (LW) approaches [22—-24]. Stedaylobal-local ap-
proaches have also been developed by exploiting the supggpoof equivalent sin-
gle layer models (ESL) and LW [25], or by using the Arlequinthuel to combine
higher- and lower-order theories [26, 27]. Many studies aritistale problems in
composites have recently been conducted as in [28—33]; fdhe mnost important re-
sults is that “processes that occur at a certain scale galernehavior of the system
across several (usually larger) scales” [34]. This resuofilies that the development
of analysis capabilities involving many scale levels isessary in order properly to
understand multi-scale phenomena in composites. Howthaerost critical issues
of many multiscale approaches proposed in literature dageckto the high compu-
tational costs required (in some cases hundreds of milliategrees of freedom) and
the need for material properties at nano-, micro- and macabe. These aspects can
affect the reliability and applicability of these approashin this chapter, applications
of the CW method to the analysis of composite structures an@rshCW models are
able separately to model each typical component of a corgsiucture by means
of a unigue one-dimensional formulation. Moreover, in aegivnodel, different scale
components can be used simultaneously, that is, homogelaisenates or laminae
can be interfaced with fibres and matrices. Such a model dmikken as a ‘global-
local’ model since it can be used either to create a globalehby considering the
full laminate or to obtain a local model to detect accurataistor stress distribu-
tions in those parts of the structure which could be mostylikéfected by failure. In
other words, the present modeling approach allows us taroptagressively refined
models up to the fibre and matrix dimensions.

In the following a brief overview of CUF is provided and the C\Wpagpach is dis-



cussed. Then static and free vibration analysis of a numit&ructures is presented,
including composite laminates, typical aircraft strueyrand civil engineering build-
ings. The results by CW models are compared to classical beeari¢s, refined

one-dimensional models (Taylor-expansion-based CUF rapdsblid and shell FE

models from a commercial code, and analytical solutionsndwailable. Finally the

main conclusions are outlined.

2 Preliminaries

The adopted coordinate frame is presented in Figure 1. Tam l®undaries ovey
are() <y < L. The displacement vector is:

Figure 1: Coordinate frame of the beam model

u($7y72) :{ Uz Uy Uy }T (1)

The superscriptT” represents the transposition operator. Stressand strain.e,
components are grouped as follows:

o-p = { Ozz Ogz Ozg }T7 ep :{ €2z €xx €z }T
T T (2)

On = { Ozy Oxy Oyy } ) €n = { €ay Cxy CEyy }

The subscript #1” stands for terms lying on the cross-section, whi}l¢ $tands for

terms lying on planes which are orthogonaftoLinear strain-displacement relations

are used:

€, = D,u 3)
€, = D,u= (D,q+ D,,)u
With:
00 2 00 0 0 & 0
D,=| 2 0 0|, Dig=|02 0|, Dyy=|2Z 0 0 (4)
20 2 020 0 0 8%



The Hooke law is exploited:
o =Ce (5)

According to Equation (2), the previous equation becomes:

Op = q;apep + QPnen

6
o, = Cpe, + Chpre, (6)

whereC,,, C,,, C.,,, andC,,, are the material coefficient matrices whose explicit
expressions are

» gll ng 0 . T 0 glﬁ ’C:l3
Cpp = 012 022 P 5 Cpn = Cnp = 9 026 023 ;
0 0 044 045 0 0
N 5 ()
Css O 0
énn = 0 566 636
0 Cs Ciss |

Coefficients {:“]ij depend on Young’s and Poisson’s moduli as well as on the fibre
orientation anglef, that is graphically defined in Figure 2 wherg,* 2’, and ‘3’
represent the cartesian axes of the material. For the sdkewity, the expressions of
coefficients 7], are not reported here, but can be found in the books by [356jr [

3

Figure 2: Fibre orientation angle

3 Unified finite element formulation

In the framework of the Carrera unified formulation (CUF), thepthcement field is
the expansion of generic functiorts,:

U:FTUT; T:1727....7M (8)



whereF, vary above the cross-section, is the displacement vector ardd stands
for the number of terms of the expansion. According to thest&im notation, the re-
peated subscript, indicates summation. Taylor-type expansions have begoitd
in previous works by [5,37-43]. The Euler-Bernoulli (EBBT) arichoshenko (TBT)
classical theories are derived from the linear Taylor-tggpansion. Lagrange poly-
nomials are herein used to describe the cross-sectioradesplent field. Three-, L3,
four-, L4, and nine-point, L9, polynomials are adopted. lddypomials are defined
on a triangular domain which is identified by three points.e3é points define the
element that is used to model the displacement field abovertss-section. Sim-
ilarly, L4 and L9 cross-section elements are defined on dlaéeiral domains. The
isoparametric formulation is exploited. In the case of tl3eelement, the interpola-
tion functions are given by [44]:

Flzl—’l"—S FQZT F3:8 (9)

wherer ands belong to the triangular domain defined by the points in Table

Point | r, | s,
1 010
2 110
3 011

Table 1: L3 cross-section element point natural coordsate

Figure 3(a) shows the point locations in actual coordinaiée L4 element inter-
polation functions are given by:

1
FT:Z(]‘_'—TTT)(l_'_SST) T=1,23/4 (10)

wherer ands vary from—1 to +1. Figure 3(b) shows the point locations and Table 2
reports the point natural coordinates.

Point| r, | s,
1 -1 -1
2 1| -1
3 1 1
4 —1 1

Table 2: L4 cross-section element point natural coordsate

In the case of a L9 element the interpolation functions arergby:
Fr=10r?+rr)(s*+ss;) r=1,3,57
Fr=1s2(s —ss)(1—r?) + 3r2(r* —rr)(1—s?) 7=2,4,6,8 (11)

F,=(1—-7r*)(1-s? T=9
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(a) Three-point element, L3 (b) Four-point element, L4
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(c) Nine-point element, L9

Figure 3: Cross-Section elements in actual geometry

wherer ands from —1 to +1. Figure 3(c) shows the point locations and Table 3
reports the point natural coordinates. The displacemddtdigen by an L4 element
is:

Uy = I Uy + Fo Ugy + F5 Ugy + Fy uy,

uy:F1 Uy1+F2 uy2+F3 Uy3+F4 Uy, (12)

Uy, = Iy uyy + Fo Uy + F3 uyy + Fyuyg,

whereu,,, ..., u,, are the displacement variables of the problem and theysept¢he
translational displacement components of each of the fountp of the L4 element.

Point| . | s,
1 -1 -1
2 0| -1
3 1| -1
4 1 0
5 1 1
6 0 1
7 -1 1
8 —1] 0
9 0 0

Table 3: L9 cross-section element point natural coordmate



The cross-section can be discretised by means of sevetahteats. Figure 4 shows
the assembly of two L9 elements which share a common edgéeelpoints.

Figure 4: Two assembled L9 elements

The discretization along the beam axis is conducted viassidal finite element
approach. The displacement vector is given by:

u= NiFqu—i (13)

whereV; stands for the shape functions agd for the nodal displacement vector:

q:i :{ Quy,, Quy ;. YGu., }T (14)

For the sake of brevity, the shape functions are not reptreeel. They can be found
in many books, for instance in [45]. Elements with four no(i®4) are herein formu-
lated, that is, a cubic approximation along thexis is adopted. It has to be highlighted
that the adopted cross-section displacement field modeietefhe beam theory. It is
therefore possible to deal with linear (L3), bilinear (Ldhd quadratic (L9) beam the-
ories. Further refinements can be obtained by adding cext®s elements, in this
case the beam model will be defined by the number of crosgaesiements used.
The choice of the cross-section discretizatioe. the choice of the type, the number
and the distribution of cross-section elements) is coreptéhdependent of the choice
of the beam finite element to be used along the beam axis. Esemrformulation has
to be considered as an one-dimensional model since the wnisnaf the problemi,e.
the nodal unknowns, vary along the beam axis whereas thiadespent field of the
beam is axiomatically modeled above the cross-section otoride introduction of
the Lagrange-like discretization above the cross-sedtiloms us to deal with locally
refinable one-dimensional models having only displacemamables.

The stiffness matrix and the mass matrix of the elements aadxternal load-
ings, which are consistent with the model, are obtained Maprinciple of virtual



displacements:
OLins = / (0e, 0y + 0€r0,)dV = 6 Lews — 6 Line (15)
14

whereL;,, stands for the strain energy, angd,; is the work of the external loadings,
andJ L;,. is the work of the inertial loadings! stands for the virtual variation. The
virtual variation of the strain energy is rewritten usinguatons (3), (6) and (13):

OLins = 5QZ¢KU”% (16)

whereK “7¢ is the stiffness matrix in the form of the fundamental nuslelm a com-
pact notation, it can be written as:

K™ = I'< (D], F.T)| Cp (D, F 1) + Cop (Do P T) | +
(D F.1)[ €, (D, R 1) + Gy (Do )] 5o +
I’ 4 [( D! F.1)C,., + (DI F, I) (Z*pn] Fovg Ig,+ A7)
[ Ig, < F, [én,, (D, F.I) + C,, (D,,F, I)} >o +
[ Ig, < F.Cop Fy b I,
where:

Io, =

O = O
OO =
_ o O

<]...[>Q:/...dQ (18)
Q

(].lij7 ]—lZJm;’ ]—ll,y]’ [liy,uj’y) — /Z<Nz Nj, Nz Nj’y’ Ni’y Nj, NZ’!/ N]’U) dy (19)

It should be noted that no assumptions on the approximatioer diave been made.
It is therefore possible to obtain refined beam models witlthanging the formal
expression of the nucleus components. This is the key-pdi@®UF which permits,
with only nine FORTRAN statements, implementation of angesrbeam theories.
The shear locking is corrected through the selective iategr (see [45]). The line
and surface integral computation is numerically perforrbgdneans of the Gauss
method. The assembly procedure of the Lagrange-type etsrnigeanalogous to the
one followed in the case of two-dimensional elements. Tloeguture keypoints are
briefly listed:

1. The fundamental nucleus is exploited to compute thens matrix of each
cross-section element of a structural node. If an L4 elensetdnsidered, this
matrix will have12 x 12 terms.

2. The stiffness matrix of the structural node is then as$ednitsy considering all
the cross-section elements and exploiting their conniéctiv



3. The stiffness matrix of each beam element is computed ssehebled in the
global stiffness matrix.

The variationally coherent loadings vector is derived ia thse of a generic concen-
trated loadP:

P={P, P, P.} (20)

Any other loading condition can be similarly treated. Theual work due tdP is:
8 Loy = PSUT (21)
The virtual variation ot in the framework of CUF is:
8 Loy = FPSUT (22)

By introducing the nodal displacements and the shape furgtibe previous equation
becomes:

6 Loy = FrN;PSQL, (23)

This last equation permits us to identify the componentfiefrtucleus which have to
be loaded, that is, it leads to the proper assembling of thdithg vector by detecting
the displacement variables that have to be loaded.

The virtual variation of the work of the inertial loadings is
§Line = / pouTidV (24)
\%

wherep stands for the density of the material, aint the acceleration vector. Equa-
tion (24) is rewritten using Equation (13):

6 Line = 697, / N;N;dy / pF.F,dQ4,; = 6qL,M7™g,; (25)
l Q

whereM ™ is the fundamental nucleus of the mass matrix. Its compsramet

M;JITS — M?iijTs — MZJ'ZTS — pfl NZN]dy fQ FTFSdQ
} } } ; } } (26)
M?,xijS — M;];’S — M;]xTS — M’LijTS — M;ijs — M;]yTS — O
The imposition of constraints can be carried out by considezach of the three
degrees of freedom of cross-section element points indipely. In other words, a
constraint can be either imposed on the whole cross-seation an arbitrary number
of cross-section points.
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TE model: LE model, LE model, LE model,
« N=1(9 DOFs) 1x1 L4 discretization 1x2 L4 discretization 2x2 L4 discretization
(12 DOFs) (18 DOFs) (27 DOF)

. N=3(30 DOFs)

Figure 5: Differences between the TE and LE models

4 The component-wise approach

The refined TE models are characterised by degrees of freédisplacements and
N-order derivatives of displacements) with a corresponddn the axis of the beam
(see Figure 5). The expansion can also be made by using ondydisplacement
values,e.g. by using Lagrange polynomials. The resulting LE can be usedhie
whole cross-section or can be introduced by dividing thessigection into various
sub-domains (see Figure 5). This characteristic allowseparaitely to model each
component of a structure. Figure 6 shows the CW approach fourastringer wing
box, whose components are modeled simultaneously usingrags-sectional ele-
ments. Each component is considered with its own geometmzhmaterial charac-
teristics. For instance, in the case of wing structures, xjgaasions can adopted for
each wing section component (spars, stringer, paneldydimg ribs, as in Figure 6.
The resulting approach is denoted as component-wise siBogds used to identify
displacement variables in each structural component. Mkivodology permits us to
tune the capabilities of the model by 1. choosing which comemd requires a more
detailed model; 2. setting the order of the structural moalée used.

1D CUF: L-elements
discretizing the cross-sections of
each component
}:3::3:{
Mid-span assembled
cross-section
Reinforced-shell .
structure

Component-wise @
approach

Figure 6: Component-wise approach to simultaneously modeels, stringers
and ribs of wing structures
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Moreover, through the CW approach FE mathematical modelbednilt by only
using physical surfaces; artificial lines (beam axes) amthses (plate or shell refer-
ence surfaces) are no longer used. This result can be othtaiherwise only using
solid finite elements.

For the results provided in this chapter, LE models were @manted by means of
four- (L4) and nine-point (L9) Lagrange-type polynomialeothe cross-section of
isotropic and composite structures, including wing reioéal-shells and civil build-
ing. To clarify the CW capabilities of the LE model, Figure 7pioposed. Figure
7 (a) shows the cross-section of a spar composed by thregestsiand two panels.
The displacement field above the cross-section of each coempof the spar is mod-
eled with one nine-point Lagrange polynomial. Finally, g 7 (b) shows a local
mode of the spar. Here, the vibration of a single componéet {pper panel in this
specific case) is clearly evident.

T 7

. L Y S Y )
L 2

(a) Three-stringer spar modeled with L9 ele- (b) Modal shape involving a single component.
ments.

Figure 7: Component-wise capabilities of the LE models

5 Results and discussion

Several structural problems have been considered. Toigighhe capabilities of
Lagrange-based models, preliminary results concern @nabkhat can be otherwise
analysed only by means of solid elements. In particular,teholiow-square cross-
section is proposed as a first assessment, then the pagsbiiealing with localised
constraints is shown. Afterwards, attention is given tacthi@ponent-wise capabilities
of the LE models. First, CW models of composite structurepasposed, including
a composite spar and a cross-ply laminate. Subsequerglgpblication of the CW
approach to the analysis of reinforced-shell wing striegus discussed. Finally, the
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capabilities of the CW models in dealing with a simplified cdetg aircraft and civil
buildings are shown. Comparisons of the results with aradythodels and commer-
cial finite element codes are provided.

5.1 Open square cross-section

An open square cross-section beam made of isotropic makersfirstly considered.
The material data are: the Young modulés,is equal tar5 [GPa]; the Poisson ratio,
v, is equal td).33. The cross-section geometry is shown in Figure 8.

z

b

Figure 8: Open square cross-section

Both ends were clamped. The length-to-height ratigh, is equal to20. The
height-to-thickness ratid,/t, is equal tol0 with & as high ad [m]. Two opposite unit
point loads,+ F},, are applied at(, L, —0.45]. Three L9 distributions were adopted
as shown in Figure 9.

Table 4 reports the horizontal displacement of the rigimehaide loaded point
which undergoes a positive horizontal force. A solid modaswsed to validate the
results.

DOFs | u, x 10° [m]
SOLID 131400 5.292
9 L9, Figure 20 a 5301 4.884
11 L9?, Figure 20 b| 6417 4.888
11 L9% Figure 20 c| 6417 5.116

Table 4: Horizontal displacement,, at [0, L, —h/2]. Open hollow square beam
[6]
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L] L] i L] L] L] { L] { L] } L] L] } L]
(b) 11 L9® (c) 11 L9®

(@ 9L9
Figure 9: Cross-Section L9 distributions for the hollow sguaeam

The free-tip deformed cross-section is shown in Figure 10th& considered L9
distributions together with the solid model solution aneared. Figure 11 shows the
three-dimensional deformed configuration of the consiisteucture. The analysis

of the open hollow square beam highlights the following cdesations.
1. The Lagrange-based beam model is able to deal with cu-sedions.

2. This type of problem cannot be analysed with Taylor-typarb models since
the application of two opposite forces at the same point dauaply null dis-

placements.
3. The most appropriate refined L9 distribution does not s&ady lie in the
proximity of load points. In this case, the most effectivEmement was the
one placed above the vertical braces of the cross-sectiarthwindergo severe

bending deformation.
Solid +

Solid  +
Beam -------
R =
e

Fiy REan ST
1+ +

M RREe T )
R
,L+1L*“‘*-v-+-¢-+-v-+-¢—+-»—F‘*‘*J(+Jr
] 1+ f+1
] J(JA T+
] Jf+¥ g J(+¥
i+ Lt f+] L+t
Fod pt H i
‘f++: [ 1‘+4 y+
e Y ~ a
T [BAN 4 Yy
Ty vt 1 Yy
e Y T ot
iy e+ +4 A+
W ‘|++‘+ H ¥+f‘
e Wt Y
el N L
: : : 3
+ LR b . -7 1t
ﬁzf”» s R Tk
%###;j %f + **:J :44 -+
(b) 11 L9® (c) 11 L9®

Figure 10: Deformed cross-sections of the hollow squarenfé
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5.2 Localised constraints over the cross-section

The present Lagrange-based beam formulation offers therbaomt possibility of deal-
ing with constraints that cannot be considered within itatsnd refined beam the-
ories that make use of Taylor-type expansions. Beam modeitieonts usually act
above the whole cross-section. In the framework of the pitespproach, each of
the three degrees of freedom of every Lagrange point of taenlan be constrained
independently. This means that the cross-section can bialfyaconstrained.

N
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===z N
—= MR
~< X
NS

Figure 11: Three-dimensional deformed configuration otibléow square beam.
11 L9 [6]

A C-section beam was analysed. The structure is made of the isatnopic ma-
terial as in the previous case. The cross-section geometshown in Figure 12.
The length-to-height ratio./h, is equal t020. The height-to-thickness ratia,/t,
is as high adl0 with » andb, equal tol [m], andb; as high as,/2. Constraints
were distributed along the bottom portions of the free-tipss-sections as shown in
Figure 13. Two unitary point loadd;,, were applied at(, 0, 0.4] and [0, L, 0.4],
respectively. Both forces act along the negative direcfidre L9 cross-section distri-
bution is shown in Figure 15. The loaded point vertical dispimenty.., is reported
in Table 5 and compared with the value obtained from the sotidel. Figures 16 and
14 show two- and three-dimensional deformed configuratiespectively.
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]

b,

Figure 12: C-Section geometry

DOFs | u, x 10° [m)]
SOLID 84600 —3.759
13 L9, Figure 15| 7533 —3.662

Table 5: Displacement of the loaded point of the C-sectiombjEd

Clamped Point ~ ®

Figure 14: Three-dimensional de-

Figure 13:  Three-dimensional formed configuration of the C-section
clamped point distribution on the beam [6]

C-section beam

The following conclusions can be made:
1. The results are in perfect agreement with those from satidels.

2. The proposed analysis has confirmed the possibility ofirdgavith partially
constrained cross-section beams that is offered by theprésrmulation.

3. The constraints can be arbitrarily distributed in the#&dimensional directions
as shown by the analysis of the C-section beam.
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BERIIIITI

T 1-

Figure 15: L9 distribution above the
C-section,13 L9

J[+++++++ F+ 4

Figure 16: Deformed cross-section of
the C-section beam;. = L [6]

5.3 Composite beams

As far as nonhomogeneous composite structures are congéheepresent compo-
nent-wise approach allows us to model each typical compgasfencomposite struc-
ture through the one-dimensional CUF formulation. Figurgdotides a description
of a possible modeling approach.

PLATE

L= 1D CUF MODEL

N

/ Layer
h Layer
X X
D)

Fibers and Matrix

Layer and a single
Fiber/Matrix cell

Figure 17: Component-wise approach for layers, fibres andaeat

A four-layer plate is considered and, in top-to-bottom ortlee components con-
sidered are the following: the first two layers, fibres andriaif the third layer,
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the third fibre-matrix cell of the bottom layer and its rema@layer portions. Each
component is considered with its own geometrical and nedteharacteristics. A

typical application of the component-wise method is bagethe following analysis
approach:

1. For a given composite structure, structural analysisssdonducted via classi-
cal methodsi(e. equivalent single layer or layer-wise).

2. The most critical zones of the structures are deteceay] (hose zones where
stress values are critical).

3. The component-wise approach is then exploited for thoseat portions in
order to obtain more precise stress fields with acceptabtemnents of compu-
tational costs.

Figure 18 shows the matrices assembly adopted in this ahdptiependently of the
choice of the components to model, both TE and LE can be usadevter, using TE
to obtain CW models would imply the addition of further eqaat imposing interface

conditions. In the following, static analysis of cross-fyninates and a composite
spar is carried out.

Multicomponent
Structure
Multicomponent

Layer @ | Structure e Fiber B
P .

_m Fiber W
\A®/L—4|

i
®
)

s|faTe jIEEEE

@ joocoliEase
. o \ Sisisle! IErmIam

: | Y 3X3 Fundamental [gjejefe] LICIEIE]

3 X 3 Fundamental l... |:||:||:| Nucleus Array Component 1 £ renent2

Nucleus Array . . .
e . . . S Component 2

Sl n ﬂ ﬂ Component1 *

|

O
O
|

|

>0

s Assembled  component3
FNIPNIPN Assembled TE l A LE Matrix ’
ﬂ u ﬂ Matrix AIALA
/\ T1A1
Multicomponent Component 3 Multicomponent
(@) TE (b) LE

Figure 18: TE and LE assembly schemes

5.3.1 Cross-ply laminate

This section deals with the structural analysis of a cargiled laminated beam. The
geometry of this model is described in Figure 19. The lendtthe beam,L, is
40 [mm], the height f) and the width &) 0.6 [mm] and0.8 [mm] respectively. Fi-
bres were modeled with a circular cross-section, with a diamd, of 0.2 [mm)].

18



< »
< »

Figure 19: Geometry of the laminated plate

Four fibres per layer were considered. A point-load, was applied afb/2, L, 0],

F, = —50 [N]. Fibres were considered orthotropic, wify = 202.038 |G Pal,
Er = E, =12.134 [GPal, Grr = 8.358 |G Pal, G, = 8.358 [GPal], G, = 47.756
|(GPal, vpr = 0.2128, vy, = 0.2128 andvy, = 0.2704. An isotropic matrix was
adopted, withr' = 3.252 [GPa] andrv = 0.355. Layer properties were the following:
Ep =159.380 [GPal, Er = E., = 14.311 [GPal, Gy = 3.711 [GPal, G, = 3.711
[GPa), Gr, = 5.209 [GPa), vir = 0.2433, vz, = 0.2433 andvy, = 0.2886. Fig-
ure 20 shows the modeling approaches considered for thigseaBoth TE (V = 4)
and LE were used for each model. Model ], the three layers of the structure were
used as the components of the CW approachMdael 2 the middle layer and the
fibres and matrices of the top and bottom layers were coresides components. The
components oModel 3are the top and middle layers and the bottom layer fibres and
matrices. InModel 4 only one single fibre-matrix cell was considered.

Model | 0%y | 0%y
1 1.579 | 0.363
2 0.512 | 0.641
3 0.513 | 0.660
4 1.569 | 0.716

Table 6: Shear stressy,, [M Pal, at two different points of the laminate, A
[0.8,0,0] and B[0.55,0, —0.2], LE models [46]

Table 7 shows the transverse displacement of the loading aod the axial stress
at the center point of the third fibre of the bottom layer. Tibse is a component in
Models 2 3 and4. Shear stress values are reported in Table 6 at two diff@@nts,
A (matrix) and B (fibre). Shear stress distributions abowedlamped cross-section
from LE models are given in Figure 21. Shear stress resudtpravided by means of
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(a) Model 1 the three layers of the structure (b) Model 2 the middle layer and the fibres
are the components of the CW approach  and matrices of the top and bottom layers
are the components of the CW approach

(c) Model 3 the top and middle layers and (d) Model 4 only one fibre-matrix cell is
the fibres and matrices of the bottom layer inserted in the CW model
are the components of the CW approach

Figure 20: Different modeling approaches for the laminate

LE models only, because LEs give higher accuracy for shese@sin [24].

Model | w. [mm] | o,, x 10~% [M Pa] | DOFs
TE

1 -9.630 —5.708 0445

2 —10.223 —7.564 0445

3 —-9.921 —7.766 0445

4 —9.675 —7.295 0445
LE

1 -9.629 —5.758 1008

2 —9.927 —7.495 7344

3 —9.775 —7.418 9024

4 —9.666 —7.264 6192

Table 7: Transverse displacement|ta®, L, 0], and axial stress, &i.5,0, —0.2],
of the laminate [46]

The analysis of the results suggests the following:
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Syy [Nmm?]

Gyy [N/m m?]

(a) Model 1 (b) Model 2

Gyy [NNmm?] Syy INmm?]

(c) Model 3 (d) Model 4

Figure 21: Shear stress,,, distribution above the cross-sectionyat= 0, lami-
nated beam, LE models [46]

1. Stress fields are significantly affected by the choice adefing approach. Very
different stress fields were detected depending on the elodithe components.
This was due to the fact that homogenised material charsiitsrwere used for
layers whereas the characteristics of each component wepged for fibres
and matrices.

2. The adoption of localised fibre-matrix components (ref&d to a lamina in
Model 3 or to a fibre-matrix cell in Model 4) allows us to use glar models
without considerably affecting the accuracy of the reduttbmpared to more
cumbersome models. This means that if an accurate stressfrededed around
a given fibre, the use of fibre-matrix components can be ldnitethe fibre
location.

3. Displacement values are less influenced than stress Eglttse choice of the
modeling approach.

5.3.2 Composite-type longeron

A beam made of composite materials, assembled with diffgya@ms, was considered
with the aim of analysing a typical simplified longeron sture for aerospace appli-
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cations. The cross-section geometry is shown in Figure B2revseveral components
can be distinguished:

A

4

Al FOAM

h/2

ub

A 4 \ 4

Figure 22: Composite longeron beam cross-section

1. the horizontal unidirectional, UD, top and bottom parts;
2. the foam made core;

3. the—45/45 vertical thin layers which coat the foam.

Table 8 shows the dimensions of the cross-section.

[m]
0.100
0.044
0.040
0.100
0.080

+ >0 o e

Table 8: Composite longeron cross-section dimensions

The length,L, of the beam is equal tb[m]. The UD and the thin layers were made
of orthotropic material, which has the following charagtes: the Young modulus
along the longitudinal F';, is equal to40 [G Pa|, and those along the transverse di-
rections are equal td [GPa]. The Poisson ratiay, is equal t00.25 , and the shear
modulus,G, is equal tol [GPal; the same Poisson and shear modulus values are
used in all directions. The foam core was modeled with armapat material with
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FE equal to50 [M Pal], andv equal t00.25. It should be noted that the LE one-
dimensional formulation permits us to obtain a quite coreeindescription of the
cross-section subdomain; the adopted L9 distributionasvslin Figure 23. A unitary
point load was applied to the bottom surfacébd®, L, —h /2] along thez-direction.
An MSC/NASTRAN® solid model was used for comparison purposes.

!

Figure 23: Cross-Section L9 distribution of the compositegkron9x L9

Table 9 presents the vertical displacements of the loadied plotained from using
the different models. The vertical displacement distitoutbove the cross-section is
given in Figure 24. The axial stress[af2,0,—h/2] is presented in Table 10. The
following considerations can be made.

1. The detection of the correct displacement field as wellfahe axial stress
requires the present LE model, since the Taylor one preaeshbsv convergence
for increasing theory orders.

2. Classical models foresee constant displacement distnisuabove the cross-
section.

3. The Lagrange model is able to detect the three-dimerissohaion, that is, the
three-dimensional solution is detected by means of theeptese-dimensional
formulation.

4. The computational cost of the present one-dimensionaeinis much lower
than that of the solid model.

5.4 Reinforced-shell wing structures

Primary aircraft structures are essentially reinforced #hells [7]. These are so-
called semimonocoqueonstructions which are obtained by assembling three main
components: skins (or panels), longitudinal stiffeningmbers (including spar caps)
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| u, x 107°° [m] | DOFs
Classical Beam Theories
EBBT —2.040 138
TBT —2.224 230
TE
N=1 —2.246 414
N =2 —2.286 828
N =3 —2.376 1380
N =4 —2.463 2070
LE
9L9, Figure 23] —2.800 | 7866
MSC/NASTRAN®
SOLID | —2.801 | 250000

Table 9: Loading point vertical displacement, for the longeron model [24]

-2.34e-006

-2.36€-006
-2.21-006
-2.215e-006 -2.38¢-006
-2.22e-006 240008
-2.225e-006

-2.42e-006
-2.23e-006

-2.44e-006
-2.235€-006
-2.24-006 -2.466-006

-2.245€-006

-2.48e-006

(@) TBT (by N =4
-2.45e-006 -2.3e-006
-2.4e-006
-2.55e-006
-2.45e-006
-2.6e-006 2.50-006
-2.65e-006 -2.55e-006
276006 -2.6e-006
-2.65e-006
-2.75e-006
-2.7e-006
-2.85e-006 -2.8e-006
(c)9L9 (d) Solid

Figure 24:u_-distribution above the free-tip cross-section of the cosii@
longeron via different one-dimensional models and soledg [

and transversal stiffeners (ribs). The determination i&sst or strain fields in these
structural components is of prime interest to structuralysts.
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\ oyy x 10* [Pd \ DOFs
Classical Beam Theories
EBBT —0.113 138
TBT —0.113 230
TE
N =1 —0.141 414
N =2 —0.736 828
N=3 —0.784 1380
N =4 —0.813 2070
LE
9L9, Figure23]  —1.625 | 7866
MSC/NASTRAN®
SOLID \ —1.776 \ 250000

Table 10: Axial stressg,,, at [¢/2, 0, —h/2] for the longeron model [24]

The static analysis of a simple spar is considered in theviatig. TE and LE mod-
els are compared both with classical beam theories and alelidents of a commer-
cial code. Analytical results based on the simplifying asgtions of the semimono-
coque assembled components are provided. According t§ {le9nternal loads in
a statically determinate reinforced-shell structure carfdund by the use of static
equilibrium equations alone. In a statically indeterménstiructure, additional equa-
tions along with the static equilibrium equations are neagsto find all the internal
stresses. We should impose compatibility conditions byrmae# the principle of
virtual displacements. This approach is hereafter redetoeas the PS (pure semi-
monocoque) model. If EBBT is applied to the idealised semirnsogae assumptions
it is possible to reduce redundancy in statically indeteate structures. This method
is hereafter referred to as BS (beam semimonocoque) model.

As far as free vibration analysis is considered, a thraagstr spar and a complete
aircraft wing are addressed. The attention is focused onapability of CW models
to detect both local (component-wise) and global modal sbap

5.4.1 Two-stringer spar

The simple spar structure shown in Figure 25 was consides&thgers were taken
to be rectangular for convenience, however their shape doeaffect the validity
of the proposed analysis. The geometrical data are as fallewial length,. = 3
[m]; cross-section height, = 1 [m]; area of the spar capgl, = 0.9 x 1073 [m?];
web thicknesst = 1 x 1072 [m]. The whole structure is made of an aluminum alloy
material. The material data are: the Young modulis= 75 [G Pal; Poisson ratio,
v = 0.33. The beam was clampedsat= 0 and a point loadF’, = —1 x 10* [N], was
applied ato, L, 0].

The vertical displacement,., at the loaded point is reported in Table 11. Compo-
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Figure 25: Two-stringer spar

| u. x10% [m] | P x 107" [N] | ¢ x 10~* [N/m] | DOFs
MSC/NASTRAN®
SOLID | 3815 2.617 —1.036 | 76050
Analytical Methods
BS —2.671 3.192 —1.064 -
PS —3.059 3.192 —1.064 -
Classical Beam Theories
EBBT —1.827 1.993 —0.274 93
TBT —2.117 1.993 —0.274 155
TE
N =3 —2.514 2.434 —0.665 930
N =5 —2.629 2.350 —0.561 1953
cw
4 L9, Figure 26a] —3.639 3.171 —1.034 2883
8 L9, Figure 26b —3.639 3.167 —1.035 4743

Table 11: Displacement values,, at the loaded point, axial load in the

upper

stringer, P, aty = 0 and mean shear flow on the sheet pagelat

y=3 two-stringer spar [47]

nent-wise LE results are given in last two rows. These moaetg obtained by using

two different L9 cross-section distributions, as showniguire 26.

The third column in Table 11 quotes the number of the degrédéeedom for
each model. The analytical results related to BS and PS agipgeare evaluated as
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(@) (b)
419 8 L9

Figure 26: Cross-section L9 distributions for the LE moddlshe two-stringer
spar

follows:
B F,L? B F,I? F.L

Yess = 3pre "ers T 3ET T AG
where | is the cross-section moment of inertia abouttais, G is the shear modulus
and A is the overall cross-section area. For this numerixaigple, stress fields are
evaluated in terms of axial loads in stringers and shear flonvsvebs, in order to
compare the results with classical analytical models. éfaflreports the axial load in

. . L
the upper stringer?, aty = 0 and the mean shear flow in the panglaty = 5" In
accordance with [9], for both BS and PS analytical modelandq were evaluated as
F.L F,

P:T, i 28
- q - (28)

wherer is the distance between the centers of the two stringers.

The variation in the axial stress and the shear stress vidrsusaxis is presented
in Figures 27. The following considerations arise from thalgses.

(27)

1. Refined beam theories, especially LE, allows us to obtaimgbults of the solid
model (which is the most accurate and at the same time thecoogtutation-
ally expensive).

2. The number of degrees of freedom of the present modelgigisantly reduced
with respect to the MSC/NASTRAR solid model.

3. Both MSC/NASTRANP and higher-order CUF models, unlike analytical theo-
ries based on idealised stiffened-shell structures argsiclal one-dimensional
models, highlight the fact that the axial stress compongptis not linear ver-
susz and that the shear stress componett, is not constant along the sheet
panel.
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Figure 27: Axial stressg,,, and shear stress, ., versus the:-axis, two-stringer
spar [47]

5.4.2 Three-stringer spar

The free vibration analysis of a longeron with three londjimal stiffeners was carried
out. The geometry of the structure is shown in Figure 28.

The spar is clamped gt = 0. The geometrical characteristics are the following:
axial length,L = 3 [m]; cross-sectional height, = 1 [m]; area of the stringers ,
A, = 1.6 x 1073 [m?]; panels’ thickness, = 2 x 1072 [m]; distance between the
intermediate stringer and they plane,b = 0.18 [m]. The whole structure is made of
the same isotropic material as in the previous case.

The first fifteen natural frequencies are reported in Tab)édgether with the num-
ber of the degrees of freedom for each model. The componmsetidE model was
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Figure 28: Three-stringer spar

EBBT TBT | N=1] N=2] N=3] N=4 5L9 | SOLID
DOFs 93 155 279 558 930 1395 | 3813 | 62580
Model 3.24P 3.24° 3.24° 3.43° 3.35P 3.31° | 3.46' | 3.15°
Mode2 20.29° 20.28° | 20.28° | 16.70t | 16.34t | 16.13t | 3.52° 3.55¢
Mode3 56.81° 56.74° | 56.74° | 21.39° | 20.97° | 20.75* | 3.76° 3.820
Mode4 111.36° | 108.81% | 108.81% | 55.25¢ | 52.90* | 51.70* | 14.27% | 13.30°
Mode5 117.60° | 111.11% | 111.11% | 60.11° | 59.23% | 58.24 | 16.73% | 15.06°
Mode6 184.30° | 183.57° | 183.57° | 108.19 | 100.81* | 97.87¢ | 17.67° | 16.33°
Mode?7 275.94% | 274.23% | 269.29¢ | 109.44® | 105.55° | 102.26° | 21.17% | 19.81°
Modes8 386.89% | 383.36° | 274.23% | 117.79° | 116.61° | 113.20° | 21.71* | 21.49
Mode9 439.21¢ | 439.20° | 383.36° | 181.03" | 165.23¢ | 119.39° | 22.95" | 22.81°
Model0 | 517.91% | 455.17° | 439.20¢ | 194.59° | 183.16° | 161.07* | 25.11° | 24.07°
Modell | 622.84° | 511.36° | 455.17° | 276.03¢ | 197.98° | 176.65° | 25.73° | 24.63°
Model2 | 669.05° | 658.20° | 511.36° | 290.25° | 229.97¢ | 189.01° | 31.21° | 29.69°
Model3 | 830.95° | 817.28% | 658.20° | 325.69° | 248.76! | 243.58¢ | 37.92° | 36.24°
Model4 | 1104.56° | 972.68 | 807.88! | 393.92! | 290.54% | 258.64° | 45.79% | 43.88%
Model5 | 1317.62¢ | 1055.787 | 817.28" | 406.78" | 302.06° | 281.59° | 54.86° | 51.64°

(*) b: bending mode,; t: torsional mode; s: shell-like modegxtensional mode.

Table 12: First 15 natural frequencig$z| of the three-stringer spar [48]

obtained by discretising the cross-section with five L9 elats, one for each spar

component (stringers and webs)

The consistent correspondence between the CW model and ti® $@del was
further investigated by means of the modal assuranceiont@AC), whose graphic
representation is shown in Figure 29. The MAC is defined aslaisconstant relating
the degree of consistency (linearity) between one modabaonther reference modal
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vector [49]. MAC takes on values from zero (representing mscstent correspon-
dence), to one (representing a consistent correspondence)

13
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MAC Value
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Component-wise model, Mode number

Figure 29: MAC values, three-stringer spar [48]

Up to the 14" mode there is a good correspondence between the two models. F
ther refinements of the LE modalg. adopting more L-elements to discretise the
cross-section of the longeron) should improve this cowadpnce. Figure 30 shows
some local modes computed with the CW model.

(&) Model2, fi2 = 31.21 Hz (b) Mode21, fo; = 84.66 Hz (c) Mode29,
fog = 104.99 Hz

Figure 30: Local modes, five L9 (LE) model of the three-steingpar [48]
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The following statements hold:

1. The classical beam theories and the linéér= 1) TE model correctly detect
bending and extensional modes. No torsional mode are detect

2. To detect the torsional and shell-like modes a highertinstrorder TE model is
necessary. However, very high expansion orders are neededrectly predict
the frequencies of these modal shapes.

3. The CW model matches the solid FE solution with a significadtiction of the
computational costs. It should be noted that the compowesg-models can
find typically shell-like modal shapes by means of the omeetisional CUF.

5.4.3 Complete aircraft wing

The modal analysis of a complete aircraft wing is proposdte dross-section of the
wing is shown in Figure 31.

C

Figure 31: Cross-section of the wing

The NACA 2415 airfoil was used and two spar webs and four sy w&re added.
The airfoil has the chora;, as equal a$ [m]. The length,L, along the span direction
is equal to6 [m]. The thickness of the panelsdsx 10~% [m], whereas the thickness
of the spar webs i5 x 1073 [m]. The whole structure is made of the same isotropic
material as in the previous cases. The wing was clamped abtite For the present
wing structure, two different configurations were conséder Let Configuration A
be the wing with no transverse stiffening members.Clifiguration Bthe wing is
divided into three equal bays, each separated by a rib whithrtess ofs x 1073 [m).

Table 13 shows the main modal frequencies of both the wirigEtiral configu-
rations. In this table, the results obtained through the Cldets are compared to
those from classical beam theories and to those from SOLIBetso In the last two
rows of Table 13, the frequencies of the first two shell-liked®es are quoted. The
following considerations hold.

1. The bending modes of the wing are correctly detected by that lower-order
and higher-order TE models.
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Configuration A

EBBT | TBT [ N=1|N=2|N=3| CW | SOLID
DOFs 93 155 279 558 930 21312 | 186921
Global Modes
I BendingT* 4.22 4.22 4.22 4.29 4.26 4.23 4.21
| Bending 22.10 | 21.82 | 21.82 | 21.95 | 21.87 | 21.76 | 21.69
[l Bending® 26.44 | 26.36 | 26.36 | 26.66 | 26.25 | 25.15 24.78
| Torsional - - 132.93 | 50.27 | 48.46 | 31.14 29.18
Il Bending® | 73.91 | 73.35 | 73.35 | 73.99 | 71.64 | 59.26 | 56.12
[l Bending® | 134.66 | 124.68 | 124.68 | 124.99 | 122.77 | 118.39 | 118.00
Local Modes
| Shell-like - - - - - 86.36 | 75.13
[l Shell-like - - - - - 88.94 | 73.85
Configuration B
DOFs 84 | 140 | 252 [ 504 | 840 | 23976 | 171321
Global Modes
I Bending”* 4.12 4.12 4.12 4.19 4.17 4.14 4.12
| Bending 21.56 | 21.30 | 21.30 | 21.50 | 21.42 | 21.28 21.22
[ Bending® 25.71 25.63 | 25.63 | 26.00 | 25.61 25.00 24.92
| Torsional - - 131.24 | 49.57 | 47.48 | 39.45 | 39.22
Il Bending® | 71.44 | 70.90 | 70.90 | 71.80 | 69.49 | 64.84 | 63.88
[l Bending® | 131.11 | 121.49 | 121.49 | 122.23 | 120.06 | 115.76 | 115.40
Local Modes
| Shell-like - - - - - 85.61 | 75.01
[l Shell-like - - - - - 91.54 | 78.61

* Bending: bending mode along thgaxis

Table 13: Global and local modal frequencies of the com@etzaft wing [48]

2. As revealed by the previous numerical examples, at leasbi@ expansion on
the displacement field (TEY = 3) is necessary to correctly detect the torsional

modes.

3. The CW LE models match the SOLID solutions: shell-like ngdan be ob-
tained by means of beam elements.

4. The computational effort of a higher-order beam modelgsaiicantly lower

than the ones requested by solid models.
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To deal with complex structures, such as the one considaertds section, the CW
models were included into a commercial software and the pastessing of the CW
model of the wing has been performed with MSC/PATRANTwo shell-like modes
evaluated by means of the CW model are shown in Figure 32 faCtméiguration A




(a) Mode 10 89.35 Hz) (b) Mode 26 {42.91 Hz)

Figure 32: Shell-like modes of the win@@nfiguration A evaluated with the CW
model [48]

5.5 Dynamic response of a simplified aircraft model

The dynamic response of a simplified model of aircraft wassimred in order to
investigate the capabilities of the present model in suchralysis. The geometry
of the structure is shown in Figure 33. The geometrical shamefunction of the
parametew, which is considered as equal @$ [m]. The structure has a constant
thickness of0.2 x a. The material considered is aluminium. Non constraintsewer
considered so the structure was free.

S5a

3a

5a

5a

Q

Figure 33: Geometry and beam axis of the TE model

Results from both TE and LE models are provided. In the TE moti¢he air-
craft, a singular non-uniform cross-section beam is carsid as shown in Figure 33.
The CW model is obtain exploiting multiple beam elements hediscretised with
an L9 cross-sectional Lagrange-element as shown in FiglireTde first ten nat-
ural frequencies for fourth- and fifth-order TE models arporéed in the first two
columns of Table 14. A comparison with respect to the redutt: the commer-
cial code MSC/NASTRAI obtained using two-dimensional elements is given in the
third column. The results by the CW model are quoted in coluoum. fIn Figure 35
the first eight natural modes evaluated by means of the CW nasdahown. The re-
sults show that the analysis of a whole aircraft structurg beacarried out by means
of higher order one-dimensional models.
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Figure 34: CW model of the aircraft exploiting multiple bealareents

TE4 TES | SHELL | LE
DOFs| 2880 4032 6120 | 1845
15t 11.427 | 11.342 | 10.804 | 10.944
2nd 20.824 | 19.499 | 17.264 | 18.201
3rd 21.591 | 21.404 | 20.053 | 20.208
4th 51.448 | 51.137 | 50.372 | 50.398
5th 73.244 | 52.989 | 51.162 | 52.122
6'h 62.246 | 59.476 | 51.307 | 52.389
7th 81.915| 74.980 | 65.552 | 66.962
gth 74.791 | 74.612 | 69.942 | 70.633
9th 102.908| 101.304| 75.774 | 77.844
10" 88.310 | 87.790 | 87.436 | 89.572

Table 14: First ten natural frequencig$:| of the simplified aircraft model [50]

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

Figure 35: First eight modes of the aircraft evaluated bymeed the LE model
[50]
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5.6 Civil engineering structures

Results from the free vibration analysis of civil structutbeough CW models are
provided here. Two structural configurations were congideas shown in Figure 36.
Configuration Ais a one-level structure composed by four square column®rafd
isotropic steel material (elastic modul#s = 210 [GPal, densityp = 7.5 x 103

[K g/m?], Poisson rati@).28) and a floor whit properties as shown in Figure 37. The
floor is made of a material whose properties &f& of those of the considered steel
alloy. Configuration Bis a three-level construction with four columns and threero

we we

we

(a) Configuration A (b) Configuration B

Figure 36: Civil structures
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Figure 37: Floor

The CW models were obtained with a combination of L9 elemdms@the cross-
sections. Results by CW analysis were compared to those frdich aswalysis by
MSC/NASTRAN®. Table 15 quotes the natural frequencies together withiheoer
of the degrees of freedom for both LE and solid models. Fi§8rehows some modal
shapes of the considered civil structures evaluated thrtug CW models.
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Configuration A| Configuration B
CW | SOLID| CW | SOLID
DOFs 3396 | 181875 | 6300 | 78975
Mode 1| 9.43* | 879" | 3.63" | 3.07
Mode 2| 9.43* | 879" | 3.63° | 3.07°
Mode 3| 13.86" | 12.44" | 532" | 4.22!
Mode 4| 23.07/ | 21.67/ | 10.64° | 9.69°
Mode 5| 36.80/ | 36.66/ | 10.64° | 9.69
Mode 6| 36.80/ | 36.66/ | 15.60 | 13.36
Mode 7| 40.59/ | 37.59/ | 16.45" | 16.42°
Mode 8| 72.41/ | 77.07/ | 16.45" | 16.42°
* b: bending mode; t: torsional mode; f: floor mode

Table 15: Natural frequencié#l z| of civil structures [51]

The following considerations are suggested.

1. Civil structures are clearly multicomponent structuned #hey can be analysed
by means of a one-dimensional CW formulation. In fact, botbgl and local
modes involving columns and floors are correctly detectedibynodels.

2. CW models allow us to model the physical surfaces of eacictsiral compo-
nent. This result is otherwise obtainable only with solidtérelements.

6 Conclusions

This chapter has presented a component-wise approachefantdysis of multicom-
ponent structures. The CW model has been obtained by emgldyanCarrera uni-
fied formulation, which puts at our disposal a very relialdariulation to deal with
higher-order beam theories. A number of structures have beesidered, including
composites, simple and complex aircraft structures, awdl lmiildings. Static and
free vibration analyses have been conducted. The resutined by means of the
CW models have been compared with those from refined TE moslglsanalytical
approaches, and solid and shell finite element models. Tdwoped CW approach
has shown its strength in dealing with several differentcdtiral problems. There are
several important features to be pointed out.

1. CW models provide three-dimensional solutions.

2. The computational cost of the present beam formulati@orsiderably lower
than those incurred for three-dimensional models.

36



(a) Configuration Amode 1  (b) Configuration Amode 3

(d) Configuration Bmode 3  (e) Configuration Bmode 5  (f) Configuration Bmode 9

Figure 38: CW modal shapes of civil engineering structuré$ [5

3. The local refinement offered by Lagrange-based formanatiplays a funda-

mental role in dealing with point loads in the presence ofnotien-walled
cross-sections.

4. The classical beam constraining approach has been owversmce a three-

dimensional distribution of the boundary conditions canob¢ained via the
present one-dimensional formulation. This implies thespgmkty of dealing
with partially constrained cross-section beams, thahispiossibility of consid-
ering boundary conditions which are obtainable by meandaté r shell and
solid models only.

5. The proposed CW approach offers significant improvementietecting the

mechanical behavior of laminated structures in particwaen stress fields
around fibre and matrix cells have to be accurately computedlobal-local
approach can be implemented easily since the same stiffima&si is adopted
to model each component of the structure.

6. The present CW analysis appears to the authors to be thecoragnient way,

in terms of both accuracy and computational costs, to caphda global and lo-
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cal (component-wise) physical behavior of multicomporgnictures, includ-
ing aeronautical structures and civil buildings.

7. The CW approach uses only physical surfaces to build FEenatical models.
This characteristic of CW models is a unique feature thatgigehis approach
clear advantages from a CAE/CAD point of view.

CW should also be employed for failure and damage analysigimd investigations.
It is important to underline that the present work deals \Witbar analysis. However,
as far as failure and damage analyses are concerned, ravitlgge- both geometrical
and material - can play fundamental roles. The extension df Ghk-dimensional
models and CW to nonlinearities should be one of the futukstasbe undertaken.
Computational advantages from CUF one-dimensional can bereeee evident in
a nonlinear scenario where iterative strategies are neeklliedeover, further work
should be directed to the development of CW models of fusedagetures and com-
plete aircraft. Transient and gust response analysis wipidrformed, in the foresee-
able future, by means of CW models of wings. Finally, moreeepntative examples
of civil structures should be considered. The possibditfered by CW models could
open new scenarios and previously unattainable analysid @@ carried out (walls,
doors and windows could be included to obtain CW models of detagbuildings;
soil and foundation analysis could be performed).
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