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Abstract ﬁég} @ @ F

A unified formulation for refined beam theories is presented. The Carrera unified
formulation, CUF, is used to implement any-order beam models. The order of the
formulation, /V, is considered as a free parameter of the analysis. N-Order Taylor
type expansions are employed to define the displacement components above the cross-
section. Closed and weak form formulations are obtained. Compact and thin-walled
beams (rectangular, annular, airfoil-shaped, C-shaped, bridge-like) are analyzed un-
der different loading conditions (distributed and point loads, bending and torsional)
and using different material properties (isotropic and functionally graded materials
(FGM)). Free vibration analyses are conducted as well. It has been mainly concluded
that higher order beam theories correctly are able to detect the mechanical behavior
of short, thin-walled , and FGM made structures. CUF has offered a flexible tool
easily to implement any-order beam theory independently of the considered structural
problem.
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Most known theories pertaining to the analysis of structures are due to the intuition
of some structural analysis pioneers. Leonardo Da Vinci gave one of the first contri-
butions to the theory of beam structures [1]. He correctly established all the features
of the displacement field of a beam, hypothesizing a linear distribution of the strain
on the cross-section. Some other well-known contributions are those by Euler [2],
Bernoulli [3], Cauchy [4], Poisson [5], Kirchhoff [6], De Saint Venant [7], Timo-
shenko [8,9], Love [10], Reissner [11], Mindlin [12], and Vlasov [13], among others.
In most cases, these ‘axiomatic’ intuitions led to a simplified kinematics of the true

1 Introduction
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three-dimensional deformation state of the considered structure: the section remains J
plane, the section/thickness deformation can be discarded, shear strains are negligible,
etc.

Beam models are the reference technique in many applications. They are advan-
tageous in the analysis of slender bodies, such as airplane wings, helicopter blades,
bridges, frames, efc. The relevance of a beam theory increases to a great extent if
higher-order models are developed to which plate/shell capabilities can be assigned,
such as those in [14] and [15]. Like in plate and shell theories [16-21] refined beam
theories can be developed according to the following two approaches: ..

{r

£
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1. the axiomatic hypothesis method,; AT ' ,:;; ff ’,m
2. the asymptotic expansion method. s ({;’/ éf}'
Both methods permit a three-dimensional problem to be reduced to a one-dimensional

one, that is, a generic variable (displacement, stress or strain component) f is ex-

pressed in terms of one or more M additional variables f, (7 = 1, M) which are

defined at an assigned point on the beam section (usually in correspondence to the

beam axis). This expansion is constructed by introducing the base functions F(z, z),

which are defined over the beam section, as expressed by the following formula:

fla,y,2) = Fi(z,2)f:(y), 7=1,2,.. M M

where z and z are the cross-section coordinates, y is the beam axis coordinate and M
indicates the number of terms in the expansion. If the three displacement components
are considered, a possible explicit form of Equation (1) is:

Uy = Uy, T T Upy, + 2 Ugy ,
Uy = Uy, T T Uy, + 2 Uy, , A (2)‘3

Uy = Uy + T Uy + 2 Uy, S ey i
g7

where ug, u,, and u, are the displacement components which are defined Jsiri"g"’ﬁ (J &)
variables (Ug,, Ugzy, «..s Uszy)-

In the first method, the so-called axiomatic method, the expression in Equation (2)
is the result of an intuition of some eminent scientists. This method has permitted one-
dimensional models to be developed for beams made of isotropic materials, which are
known as Euler-Bernoulli’s and Timoshenko’s theories. The former does not account
for the transverse shear effects on the cross-section deformations. The latter provides
a model which foresees a constant shear deformation distribution on the cross-section.
Both models yield better results for slender beams than for short beams. Refined
theories can be derived assuming more sophisticated kinematics models. Excellent
works concerning the development of refined beam models by means of the axiomatic
approach are those by Kapania and Raciti [22, 23], Librescu and Song [24], Banerjee
and Williams [26], Song and Waas [25].

In the second method, the so-called asymptotic method, a suitable kinematics model
for a given structural problem is obtained by investigating the role played by the vari-
ous variables f; in terms of a perturbation parameter (usually a geometrical one, such



as the span-to-height ratio for beams). The three-dimensional problem is thus reduced
to a one-dimensional model by exploiting an asymptotic series of a characteristic pa-
rameter. The asymptotic approach furnishes ‘consistent’ approximations.. This means
that all the retained terms are those which have the same order of m ﬁﬁidﬁ as the
introduced perturbation parameter when the latter vanishes. Important €ontributighs:

to the beam modelings by means of the asymptotic approach are those by Vo]pvg/ ) 1
al. 127}, Volovoi and Hodges [28], Popescu and Hodges [29], Yu et al. {30], Yu /
Hodges [31,32]

This work is embedded in the framework of the Carrera Unified Formulation for
beam [15, 38—43], plate and shell [20, 21, 33-37] structures. This approach was in-
troduced by the first author during the last decade and formulates governing equa-
tions, in both strong and weak forms, in terms of a few ‘fundamental nuclei’ whose
form does not depend on either the order of the introduced approximations or on the
choices made for the base functions in the thickness direction (for plates/shells) or
over the section (for beams). The present work deals with several structural problems
by means of higher-order beam theories. Analytical and finite element approaches are
taken into account. Structures having different geometries (compact and thin-walled)
and loadings (bending and torsion) are analyzed. Isotropic and FGM materials are
accounted for. The results are compared with those retrieved from the open literature
and with those obtained through shell and solid models. This chapter is organized as
follows. The modeling approach is described in Sections 2 and 3. The results and their
discussion are given in Section 4. The main conclusions and the outlooks are drawn
in Section 5.

2 Considered Beam Theories

Classical and higher-order theories are considered in this work. The adopted coordi-
nate frame is presented in Figure 1. The beam boundaries over y are 0 < y < L. The

Q

Figure 1: Coordinate frame of the beam model



displacement vector is:

u(z,y, z) ={ Uy Uy U, }T 3)

The superscript "1™ represents the transposition operator. Stress, o, and strain, €,
components are grouped as follows:

T T

a'p:{ Ozz Ozz Oz } ) ep:{ €2z €zz €2z }

On :{ Ozy Ozy Oyy }T’ €n :{ €2y €xy Eyy }T

)

The subscript “n” stands for terms lying on the cross-section, while ’p” stands for
terms lying on planes which are orthogonal to €). Linear strain-displacement relations
are used:

€ = Dpu )
€En = Dnu - (DnQ + Dny)u
With:
) Nl
002 00 0 0 5 O
Dy=2Z2 0 0|, Dya=|0 Z 0|, Dyy=| 2 0 0 [ (6)
2] 2] a
20 2 020 0 =

Under the hypothesis of isotropic linear elastic FGMs, the generalised Hooke’s law
holds:
o=C(z,z2)e

According to Equations 4, the previous equation becomes:

o, = (?(a:, 2)pp€p + C:?(a:, Z)pn€n @®
on = C(z,2)np€p + C(T, 2)pn€n

As far as the material properties are concerned, Young’s modulus, E, is supposed to
vary with respect to = and z coordinates according to the following exponential law:

E(z,z)= Epelera+81) (azz+02) o

Poisson’s ratio, v, is considered constant. Matrices C,p, C,,,, C,p and C,,;, in Equa-
tions (8) are:

Chn Ciz O Css 0 0
épp: 612 622 0 elaz+azz) énn _ 0 é44 0
0 0 Cg | 0 0 Ca
_ -7 00 C:'13 |
Cpn=Cpy=| 0 0 Cp eloztoz?)
00 0 |




where the constant stiffness coefficients C’ij are:

1—w

C’ — C’ — C’ — (B1+82)
11 22 33 (1 i 1/) (1 — 21/) Epe
~ = ~ v
Cio = Cha = Con = (B1+82) ™~
12 13 23 A+ (=) Ege If ¢11)
~ =~ ~ 1 /"‘»'g ’
C — C =t C - (ﬁ1+ﬁ2) :
44 55 66 5 (1 T 1/) Epe

2.1 Classical Theories: Euler-Bernoulli’s and Timoshenko’s Beam
Models

Classical beam theories are those by Euler-Bernoulli (EBBM) and Timoshenko (TBM).
These models are based on first-order approximation of the kinematic field. EBBM
was formulated to describe the bending mechanics, it does not account for the trans-
verse shear effects. The kinematic field upon the cross-section of the EBBM theory is
given by:

Uy = Uy,
Uy = Uy, — T Ugyy — 2 Uz y 12)
Uy = Uy

TBM foresees constant stress and strain shear distributions. In this case the displace-
ment field becomes:

Uy = Ug,
Uy = Uy, T T Uy, + 2 Uy, e (13)
U, = Uy J: ! .

EBBM and TBM require the correction of the material coefficients to é\ontra"s»tf Pois-*} if;““

son’s locking. SO

¥
.

2.2 Refined Theories via Unified Formulation

In the framework of the Carrera unified formulation (CUF) [15, 20,21, 38,39,41], the
displacement field is assumed as an expansion in terms of generic functions, F,:

u=Fu, 71=1,2,..,M (14)

where F. are functions of the coordinates x and z on the cross-section. u, is the dis-
placement vector and M stands for the number of terms of the expansion. According
to the Einstein notation, the repeated subscript 7 indicates summation. Equation (14)
consists of a Maclaurin expansion that uses the 2D polynomials z* 27 as base, where ¢
and j are positive integers. Table 1 presents M and F'. as functions of N. For example,
the second-order displacement field is:

Up = Ugy + T Ugy + 2 Uy + T2 Ug, + T2 Uy, + 22 Uy

_ 2 2
Uy = Uy, + T Uy, + 2 Uy + T Uy + T2 Uy + 2° Ugg (15)
Uy = Uy + T Ugy + 2 Uy + 2% Uy, + T2 Uy, + 22 uy



[N M 7
0 T i =1
1 3 Fp=x Fy=2z
2 6 F4=12F5=11F6=z2
3 10 Fr =z Fg =2%2 Fg = z°2 Fig =23
N N+1)(N+2 =N — N—-1 N — N-1
K—zzg—l F N2iN42 ' F N24iN44 ==z z ... FN(N+3) =zz F(N+1)(N+2) =N
2 Z

Table 1: Maclaurin’s polynomials

[
EBBM and TBM can be obtained by acting on the F, expansion. C}’assical“ﬂleo,nes

and first-order models require the assumption of opportunely reducé mgterlal ;shff- B
ness coefficients to correct Poisson’s locking (see Carrera and Brischetté+f50, 5}]),"
Unless differently specified, for classical and first-order models Poisson’s locklng is-/ /

corrected according to Carrera and Giunta [15].

3 Governing Equations

The principle of virtual displacements (PVD) is exploited to obtain the strong and the
weak forms of the governing equations in terms of displacement components.

3.1 Strong Form

The strong form of the governing differential equations and the boundary conditions
are obtained by the PVD:
0L, = 0L, + 3L, (16)

L; represents the strain energy. L, and L; stand for the work due to a surface loading,
p*, and a line loading, 1* that act on a k sub-domain. ¢ stands for a virtual variation.

Variation of the Strain Energy

According to the grouping of the stress and strain components in Equation (4), the
virtual variation of the strain energy is considered as the sum of two contributions:

6L; = / / Sela, dQ dy + / / Selo, dd dy (17)
I Q I Q

The virtual variation of the strain energy in a compact vectorial form is:

y=L
y=0

SL; = / sul K™ u, dy + oul II"* u, (18)

The components of the differential matrix K™ are:

K‘rs _ J22k +J66k _ J44k a

T,z8x T,28,z T8 a



K;'; — J44k +J551c _ J33lc8_2

Tz Ty28,2 TS 8y2
11k 66k 55k 62
TS __
K. = Jrase T Irzs. = Jrs 3_y2
Ts __ 7l2k 66k Ts __ 7l2k 66k
Kzz - J‘r,zs,z + JT,IS,Z Kzz - JT,IS,Z + ‘]7',23,I r
K7™ — (J13lc _ J55k) 3 K7 = — (J13lc _ J551c) _2 »‘J ;
zy T,2$ TS,z ay yz TS,z T,28 ay [z ; ,
[
KT — (J23k: _ J44k:) ﬁ KTs — _ (J23k: . J44k) g (19;
Ty T,z TS ay yr TSz T,z$ ay

The generic terms J2%5 , J2*, J2% and JZ* are the cross-section inertial momenta

of a k sub-domain that account for the material gradation:

Jgglc — /C!l]cge(mz—{—azz)FT@Fs’f do Jggk — /Cf!l]cge(aw—{—azz)FTFs do

T,d,s,f
k k
Q Q (20)
2 [Cheweror, £ a0 g = [Cheerenr p, a0
Qk Ok
As far as the boundary conditions are concerned, the components of II7 are:
i N
0 0 0
17 = J44k_ 17 = J33k_ 178 = J55k_ SEy a
TT TS 6y, vy TS 6y, 2z TS aya f‘ » H ’-: C
TS _ TYTS _ IR T T
I = I =0 e
Ts __ 755k Ts __ 44k s _ 713k s __ 723k 7 AN
sz - JTS,Z’ sz - JTs,I’ Hyz — JTs,z Hyz - JTS,I L(ﬂ)"‘"'

Virtual Work of the External Loadings

The virtual work done by the external loadings is assumed to be due to a surface
loading and a line loading.

The components of a surface loading are:
" ={rpz Py P P Py PR (22)

They act as shown in Figure 2. The lateral surfaces {S5* : ¢ = z, 2} of the beam are
defined on the basis of the normal versor {nf;jE : ¢ = z,z}. A normal versor with the

same orientation as the z or z axis identifies a positive lateral surface. The external
virtual work due to p is:

5L, = (6L’;$I +OLE, + 8Lk, + 0Lk +OLF, + 5L'Zfz)k 23)

Its explicit terms are:

5

,.
] .
i
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Figure 2: Components of a surface load-

ing; lateral surfaces and normal vectors  Figure 3: Components of a line loading

of the beam
<6L’;%I, 5L’;}I) / Stigr (p’ciE’cz , pkiEkT’%) dy
l T
(M/ki’ 6Lk§z) :/6uz7'< * phat ket ke ) dy
!
(M/k?y, Okay) /5uyT (pkrtEkz | pEEEke ) dy
!
Where:

The components of a line loading (see Figure 3) are:

{lki llc:t lki llc:t lki lki}
The external virtual work is:

6L = (OLf, +Lfy + 0Lk + 0Lk +dLfy +0LYy )

(24)

(25)

(26)

27)



whose terms are:

k k kt k k
((SLl;t , /5UZT F; (Zlfﬁxli) , L F, (zzfz’xlfz
k+ k kt
(6Lli , /(SUIT l zFT (zli I ) lzz F—r ( =
k k kL k k
((SLl;t y /5uyT (leiy, .’Elziy) , lzy F‘r (eriy,.’ﬂl;t

))

(28)

where { (szi , xfi) T i=2,T; ] = 2,4, y} are the coordinates of the line loading ap-
j ij fon

plication point above a k cross-section sub-domain.

The Fundamental Nucleus

The explicit form of the fundamental nucleus of the governing equations is obtained

from Equations (19), (24) and (28):

g, :

(Jo2h, + I8 ) uss + (T2, + T2 ) as

—If sy, + (T2 = TEL) tys, =

[p’;fEfzi kiEkz +lkﬂ:F ( 2~ ti) ol ( 2z fi)]
duy,

— (73 = T s, — (TR0 — TP s,

(inlg,z J‘?i’: z) Uys — Jsskuys,yy = co " )
[sziEfz kiEkl +lkiF (zziv Lyt ) lkiF (zi’ fy)h. (29)
Oty :

(J:,lzlz,z inks ::) Uzs — J55kuz5vyy

+ (L7254 TEE Vg + (I - T )y, =

[pI:;i:Efa: k:i:Ekz y IR ( 2 a ) o ( 2 ;ci

The boundary conditions are:

y=L
y=0

By (%5t T+ S,
Bty (S, + J50,) [/ = 0

[Outar (75 e, + Jrg s ts) ]

TS,z - 0
y=L

y=0

=0

TS,z ys

)l,

k

(30)



For a fixed approximation order, the nucleus has to be expanded versus the indexes
7 and s in order to obtain the governing equations and the boundary conditions that
concern the desired model.

Closed Form Analytical Solution

The differential equations in Equations (29) and the related boundary conditions in
Equations (30) are solved via a Navier type solution by adopting the lelowmg dis-
placement field: : 0

Upr = Upr Fr (z, 2) sin (ay)

Uy, = Uy Fr (2, 2) sin (ay)

Uzr = U, Fy (2, 2) cos (ay) 31

On the assumption that the external loadings vary towards z in the following manner:

(Pt sin (ay) ) (L sin (ay) )
PEE cos (ay) L’“i cos (ay)
P*E sin (ay) L’“i sin (ay)
k_ k_ Y
P =1 Pki sin (ay) o U= { L’Ci sin (ay) ( (32)
P’Ci cos (ay) L’Ci cos (ay)
| P’Ci sin (ay) \ L’Ci sin (ay) |

This last assumption does not represent a loss in generality, since a genenc loading
can be approximated via its Fourier’s series expansion (see [44,45]). The. term o is:

mm

a=2 33

L
Where m represents the half-wave number along the beam axis. {U;, : i = z,vy, z}
are the maximal amplitudes of the displacement components and {P’Ci 1=2,2;] =
z,y,z} and {LfS : i =z, 2;j = z,y, z} the maximal amplitudes of the surface and
line loading, respectlvely The displacement field in Equations (31) satisfies the bound-
ary conditions, Equations (30), since:

Ugr (0) = upr (L) =0
Uyr,, (0) = Uy, (L) =0
Uzr (0) = u,r (L) =0 (34)

The fundamental algebraic nucleus is obtained from Equations (29) upon substitution
of Equations (31) and (32):

oU,,
(L2 + T8 Y Uss + (J25, + T8+ 02T25) Usg

o (JB% ~ JHE) Uy, = [PEEST + PREES 4+ LAEF, (ot )

Lo ( A T Etl)]k



0U,; :
(JlSk . J55k) Uzs o (ngf: _ J44k) Uzs

T,z$S

(J44k J55k + aZJSSk) Uys — | e

Tz 8,z Tyz8,z

[P’“iE’“” + PEEEET + IEF, ( ZERE li) + Loy Fr ( ol il )Jk @3

oU,, :
(Jllk Jﬁﬁk 2J55k) Uzs + (Jle Jﬁﬁk ) U
—a (JI% Jfgﬁ) Uy = |PEES" + PEER + I F, (2f 2k

LkiF ( A fi)]k

For a fixed approximation order, the algebraic system has to be assembled according
to the summation indices 7 and s. Its solution yields the maximal displacement am-
plitudes. The strains are retrieved by the geometric relations, Equations (3), and the
stresses via the generalized Hooke’s law, Equations (8).

3.2 Weak Form

The weak form of the governing equations is obtained by means of the finite element
method. The following formulation is valid only for structures made of materials with
constant properties above the cross-section. The nodal displacement vector, q_;, is
introduced:

q,, = { Quz, Quy,, Qu., }T S (36)

The displacement vector becomes: .
u, = NiFq, @7

Where N; are the shape functions whose expressions are not reported here for the
sake of brevity, they can be found in many books, for instance in [52]. Elements with
4 nodes (B4) are herein adopted, that is, a cubic approximation along the y axis is
adopted. It has to be highlighted that, while the order of the beam model is related to
the expansion on the cross-section, the number of nodes per each element is related to
the approximation along the longitudinal axis. These two para‘meters are totally free
and not related to each other. An /N-order beam model is therefore a theéory hich
exploits an N-order polynomial to describe the kinematics of the cross-section. Thé.
stiffness matrix of the elements and the external loadings, which are consistet . wﬁh )
the model, are obtained via the principle of virtual displacements:

8Lins = / (6€)0p + 0€50,)dV = § Loy (38)
14

where L;,; stands for the strain energy, and L., is the work of the external loadings.
9 stands for the virtual variation. The virtual variation of the strain energy is rewritten



using Equations (5), (8) and (37), in a compact format which becomes:

6Lin = 645K,

where K“"# is the stiffness matrix in the form of the fundamental nucleus. Its compo-
nents are:

K = Cy / F, F, dQ / N;N;dy + Ces / F, F, dQ / N;N;dy+
{ Q {

Cua f F,F,dQ / N, N, dy
Q l

Kirs = Cy / F,, FydQ / N;N; dy + Cu / F,F, dQ / N;, N;dy
Q 4 Q l

Kims = C / F, F,.dQ / N;N;dy + Ces / F, F, dQ / N;N;dy -
Q l Q {

K;J;s = 044/QF7',1F3dQ/ZNivaydy+C~’23/QF"'F3:de/lN‘inyjdy

Kirs = Css / F, F, dQ /l N;N;dy + Cua /Q Fr F,dQ /l NiNjdy+

(40)
033 FTFSdQ /Nz‘,yNj,ydy
Q l

K;J;—s = 6'55/FT,ZFSdQ/Nz'Nj’ydy‘FC’lg/FTFSdeQ/Nz',ydey
Q 4 Q 4

Kims = (i, / F, F, d / N;N;dy + Ces / F, F, . dQ / N;N;dy
Q l Q 4

Kir = Gy / F, F.dQ / N;N;j,dy + Css / F,F,,dQ / N;,,Njdy
Q 4 Q 4

K;J;-S = C’ll/FT,ZFS,de/Nidey-FC'ﬁﬁ/FT,IFS,IdQ/Nidey+
l Q l

Css /Q F,F,dQ / N, N;, dy
Q l

It should be noted that no assumptions on the approximation order have been done..
It is therefore possible to obtain refined beam models without changing the formal
expression of the nucleus components. This is the key-point of CUF which permits,
with only nine FORTRAN statements, us to implement any-order beam theories. The
shear locking is corrected through the selective integration (see [52]).



Virtual Variation of Inertial and External Loadings

The virtual variation of the work of the inertial loadings is:
6Line = / pidbuTdV 41)
1%

where p stands for the density of the material, and i is the acceleration vector. Equa-
tion 41 is rewritten using Equations 5, and 37:

5 Line = / 5qT.N, { / p(FTI)(FsI)dQ] N;éfydy @)
{ 9]

where { is the nodal acceleration vector. The last equation can be rewritten in the
following compact manner:

OLine = 0qH;M77G; (43)

where MY7* is the mass matrix in the form of the fundamental nucleus. Its components
are:

M = M = M = /ﬂ F,F,dQ /l N.N,dy P

Maic_g'jrs — M;‘?:s — M;'_;Ts — M;_ZTS — M;'_;Ts — M;’_Lrs =0
The undamped dynamic problem can be written as follows:
Ma+ Ka=0p 45)

where a is the vector of the nodal unknowns and p is the loadings vector. Introduc-
ing harmonic solutions, it is possible to compute the natural frequencies, w;, for the
homogenous case, by solving an eigenvalues problem:

(—~wM +K)a; =0 (46)

where a; is the ¢-th eigenvector.

The loading vector variationally coherent to the model is derived for the case of a
generic concentrated load P:

P={P, P, R} @7
Any other loading condition can be similarly treated. The virtual work due’to P is:
6Lez: = Pou” (48)
The virtual variation of u in the framework of CUF is:

6Legt = F,Péu’ (49)



By introducing the nodal displacements and the shape functions, the previous equation
becomes:
OLegt = FTN’LP(qu'-;, (50)

This last equation permits the identification of the components of the nucleus which
have to be loaded, that is, it permits the proper assembling of the loading vector by
detecting the displacement variables that have to be loaded. In the case of first order
expansion and P acting on a node along z direction only, the virtual external work is:

0Lzt = Py, Uz + TpPy, 0ugs + 2p Py, dtigs D

where [z,, z,]are the coordinates on the cross-section of the loading application point.

4 Results and Discussion

Several structural models are herein considered. Preliminary results concern the static
and free vibration analysis of compact cross-section beams. More complex geometries
are addressed afterwards. Particular attention is given to thin walled structures, such as
hollow cylinders and wings, and bridge-like cross-sections. Isotropic and FGM mate-

rials are used. Various loading and boundary conditions are considered (e.g. bending, .

torsion, cantilevered, etc.). Comparisons of the results with analytical models and
commercial finite element (FE) codes are provided.

4.1 Compact Square Cross-Section

A square cross-section beam made of isotropic material is considered. The geometry
of the model is shown in Figure 4. b and h are assumed as high as 0.2 [m]. Two
length-to-thickness ratios, L /h, are used: 100 and 10. Slender and moderately thick
beams are therefore considered. The Young modulus, F, is equal to 75 [GPa]. The
Poisson ratio, v, is equal to 0.33. First the static analysis is addressed. The beam is
cantilevered. A force, F,, is applied at the free cross-section center point. [ is as-
sumed as high as —50 [N]. Table 2 shows the influence of the number of elements and

4

b

Figure 4: Rectangular cross-section
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No. Elem. EBBM TBM N=1 N=2 N=3 N=4

L/h =100, u, x 10? [m], Uy, X 10° = —1.333 [m]

1 —-1.334 -1334 —-1.334 -1.239 -1.239 —-1.239|

3 -1.334 -1334 -1.334 -1.302 -1.302 -—1.302

5 -1.334 -1334 -1.334 -1.315 -1.315 -1.315

10 -1.334 -1.334 -1.334 -1.325 -1.325 -1.325

40 -1.334 -1334 -1334 -1.332 -1.332 -1.332
L/h =10, u, x 10° [m], u,, x 10° = —1.333 [m]

1 —1.334 —-1.343 -—-1.343 -—-1.248 -—-1.250 -1.250

3 —-1.334 -1343 -1.343 -1.309 -1.311 -1.311

5 —-1.334 -1.343 -1.343 -1.320 -1.322 —1.323

10 -1.334 -1.343 -—-1.343 -1.327 -1.329 -1.330

40 -1.334 —-1.343 —-1.343 -1.330 -1.332 -1.333

Table 2: Vertical displacement of the loaded point for different meshes and beam
models [38]

of the beam theory on the vertical displacement of the loaded point. The benchmark

value, u,, has been obtained by using the Euler-Bernoulli theory. The torsion analysis."

is conducted by applying a torque as high as 50 [kN m] at the free tip. A 40 four-node
element mesh is used. Table 3 shows the rotation values of the free section obtained
for different beam models. The benchmark has been obtained as in [53].

L/h=100 L/h=10
Benchmark 9.033 0.903
N=1 7.635 0.768
N=2 7.616 0.747
N=3 7.609 0.720
N=4 9.000 0.862

Table 3: Rotation of the free section, [deg], [38]

The free vibration analysis considers a simply-supported beam with the same mate-
rial and geometric features as the static case. A 10 four-node mesh is adopted. Tables
4 and 5 report the first two bending frequencies for the slender and the thick beam,
respectively. Increasing order beam models are considered. The reference solutions
fi, and f5, have been obtained via the Euler-Bernoulli theory.

The following considerations can be made at the end of the structural analysis of
the compact cross-section beam.

1. A general excellent agreement has been found between the results from the
present formulation and the analytical benchmarks in terms of displacements
and natural frequencies.




EBBM TBM N=1 N=2 N=3
1, = 1.195 [Hz]

1195 1194 1.194 1.194 1.194
f2, = 4.780 [Hz]

AT78 AT ATTS 4775 4775

Table 4: First two bending natural frequencies in the case of L/h = 100 [39]

EBBM TBM N=1 N=2 N=3 N=4
1, = 119.495 [Hz]

118.968 117.701 117.701 117.728 117.526 117.525
f2, = 477.978 [Hz]

470.143 451.838 451.838 452.193 449.438 449.419

Table 5: First two bending natural frequencies in the case of L/h = 10 [39]

2. The use of a more refined mesh as well as higher-order models reduces the
stiffness of the FE model.

3. The beneficial effect of the higher-order theories increases as the slenderness
ratio decreases and the mode number increases.

4.2 Wing Models

Different wing models are analyzed. The static analysis is conducted on a three-cell
cantilevered wing modeled via a fourth-order model. Figure 5 shows the geometry of
the cross-section. A NACA 2415 profile has been used to define the contour of the
wing. The chord, b, is equal to 1 [m). L/bis assumed as high as 5. The torsion analysis

Figure 5: Wing cross-section

has been conducted by applying two opposite vertical forces, +F), at the leading and
trailing edges of the free cross-section. The magnitude of the forces is equal to 5 [kN].
Figure 6 shows the deformed loaded cross-section. Unconventional wing geometries
are considered as well. Figure 7 shows the geometric characteristics of the considered




Deformed
Undeformed

Figure 6: Deformed wing cross-section under a torsional load [38]

model. The cross-section is rectangular with b equal to 1 [m] and & equal to 0.1 [m]
(Figure 4 shows the geometric characteristics of the cross-section). The length-to-
thickness ratios, Ly /h and L, /h, are equal to 100 and 30, respectively, with L3 as
high as L;. The free vibration analysis is conducted and the results are compared with

Figure 7: Geometry of the joined wing

those retrieved via a shell model in MSC Nastran. Forty-five four-node beam elements
are used and a fourth-order theory is exploited. Figures 8 and 9 show a natural mode
compared with the one by the shell solution.

The assessments on the wing models highlight the following statements.

1. The proposed beam formulation is able to deal with arbitrary cross-section ge- |

ometries as well as unconventional configurations.

2. Refined models are able to detect non-classical effects such as the warping of a
thin-walled structure.

3. Higher-order beam theories furnish results which are comparable with those
given by more cumbersome shell models.



Figure 8: Natural mode of a joined  Figure 9: Natural mode of a joined
wing. Beam model solution. f = wing. Shell model solution. f = 47.118
47.512 [Hz] [42] [Hz] [42]

4.3 Thin-Walled Structures

Different thin-walled structures are considered. Analytical and FE solutions are con-
sidered.

C-Shaped Cross-Section and Bending-Torsional Loading

Beams with a C-shaped cross-section are subjected to a uniform loading acting as
shown in Figure 10. Closed-form solutions are considered. Loading and the points in
which displacements and stresses presented in tabular form are evaluated are also pre-
sented there. Table 6 presents the out-of-plane displacement components for L/a =
100 and ten. Results are non-dimensionalised as follows:

L/a=100 Lja=10

10! x7w, 107! x 7,
FEM3D —9945  —3.528
N=15 —9.829  —3.502
N=8 ~9.277  —3.203
N=5 ~8304  —1.830
N=3 ~8.138  —0.878
N=1 ~8131  —0.820
TBM ~8.131  -0.813
EBBM  —8131  —0.813

Table 6: Out-of-plane displacements for C-shaped beam, L/a = 100 and 10 [54] - = -/

o aF
(U, Uy, u,) = W (U, Uy, Uuy) (52)

The deformed mid-span cross-section for L/a = 10 is shown in Figure 11. Colour
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Figure 10: C-shaped cross-section geometry, loading and results verification
points

maps of stress components are presented in Figures 12 and 13. For the sake of brevity,
only deep beams are considered. The following considerations hold.

1. An accurate prediction of the out-of-plane displacement u, calls for an eighth-
order model at least.

2. The 15%-order model describes accurately the in-plane warping. It differs from
the FE solution only near the free end of the upper branch.

3. A 15%-order model has been considered. Apart for stress concentfation in corre-

spondence of the internal corner points, results are very similar. ingl}”gradiénts :
of oy, are correctly modeled. R

Thin-Walled Cylinder

First a thin-walled cylinder is considered. Both ends are clamped. The cross-section
geometrical features are shown in Figure 14. The thickness of the structure is equal to
0.02 [m], the diameter, d, is equal to 2 [m], and the length-to-diameter ratio, L/d, is
as high as 10. The static analysis is assessed by applying a point load, F, at [0, L/2,
1]. F, is equal to —5.0 [MN]. Table 7 shows the vertical displacement of the loaded
point obtained through different beam theories. A shell model is used to compare the
results. The second column reports the total number of degrees of freedom of each
model.



Figure 11: In-plane warping of C-shaped beam cross-section at mid-span, L/a =
10 [54]

60000 Pa
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-40000
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@ b

Figure 12: Dimensionalised stress o, (Pa) above the cross section for C-shaped
beam at mid-span via (a) FE solution and (b) 15%-order model, L/a =
10 [54]

Figure 15 shows the deformed configurations of the cylinder for different beam
theories. A two-dimensional sketch of the deformed loading point cross-section is
shown in Figure 16 where results from beam theories and a shell model are compared.

Table 8 reports the first two natural bending frequencies of the considered structure.
Increasing order beam theories as well as shell and solid models are used. Superscripts
indicate the position of each frequency within the eigenvalue vector. Figures 17 and
18 present two natural modes which show lobes along the circumferential direction.
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Figure 13: Dimensionalised stress o, (Pa) above the cross section for C-shaped
beam at y = 0 via (a) FE solution and (b) 15®-order model, L/a = 10
(541

Az

- o

Figure 14: Geometry of the annular cross-section

The first three-lobe frequency is reported in Table 9 for different beam, shell, and solid
models.

The analysis of the thin-walled cylinder has highlighted several important features
of the present beam formulation.

1. Classical and lower-order beam models are not able to furnish reliable results
whenever important cross-section deformations are present.

2. Refined models can detect results that are usually obtainable just by means of
shell or solid models, that is, shell-like results can be obtained by means of beam
elements.

3. The bending frequencies are well computed by the third-order model. The



Theory | DOF’s | u, [m]

EBBM | 155 | —0.046

TBM | 155 | —0.053

N= 279 | —0.053 o

N=2 | 558 | —0.052 B

N=3 | 930  -0.114 T
N=4 | 1395 | —0.229 BT
N=5 | 1953 | —0.335 SR
N=6 | 2604 | —0.386

N=7 | 3348 | —0.486

N=8 | 4185 | —0.535

N=9 | 5115 | —0.564

N=10 | 6138 | —0.584

N=11 7254  —0.597

Shell | 49500 | —0.670

Table 7: Vertical displacement of the loading point for different beam theories and
comparison with a shell model [40]

(a) EBBM by N=4

(c) N=8 dN=11

Figure 15: Deformed configurations of the thin-walled cylinder for various theo-
ries [40]



Undeformed - ) N=9
Shell N=8
N=11 - N=7
N=10 N=6

Figure 16: Deformed configurations of the loading point cross-section for differ-
ent beam theories and comparison with a shell model [40]
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Theory | DOF’s | f; [Hz] fo [Hz]
EBBM 155 | 32.598'%" | 88.07234
TBM 155 | 30.304%2 | 76.447%4
N=1 279 | 30.304%2 | 76.4473*
N=2 558 | 30.73012 | 77.3383+4
N=3 930 | 28.75412 | 69.448%6
N=4 1395 | 28.74734 | 69.402%10
N=5 1953 | 28.745%4 | 69.39713:14
N=6 2604 | 28.745%* | 69.397'7:18
Shell 49500 | 28.489%* | 68.940'718
Solid 174000 | 28.369%* 68.68717*184

(*): positions of the frequencies in the eigenvalue

vector

Table 8: First two bending frequencies of the thin-walled cylinder for different

beam, shell, and solid models [40]

EBBM



(a) Two lobes (b) Three lobes

Figure 17: Circumferential natural modes, three-dimensional view, [40]
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Figure 18: Circumferential natural modes, two-dimensional view, [40]

Theory | DOFs | f [Hz]

EBBM 155

TBM 135 | —
N=1 279 | -
N=2 358 | —
N=3 930 | —
N=4 1395 | 75.690
N=5 1953 | 65.186
N=6 2604 | 52.386
N=7 3348 | 50.372
N=38 4185 | 40.102

49500 | 40.427
174000 | 46.444

2]
=
o

=

7]
Q

=
(oW

Table 9: First three-lobe frequency [40]



proper detection of more sophisticated modal shapes or the presence of point
loads require the use of even higher-order models.

4. The computational effort of a higher-order beam model is significantly lower
than the ones requested by shell or solid models.

4.4 Bridge-Like Cross-Section and Discussion on the/Shepr Cor-

. /
rection Factor A

A bridge-like structure is considered herein. Figure 19 shows the geometric charac-
teristics of the cross-section. The dimensions of the structure are reported in Table
10. Steel is used as the material, with E as high as 210 [GPa], and v equal to 0.3. A
uniform distributed load, Pks, is applied at the top surface of the beam. Ps is equal to
10 [kPa]. The beam is considered clamped-clamped. An MSC Nastran solid model
is used for comparison purposes. Figures 20 show the vectorial distribution of the

AZ
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Figure 19: Geometry of the bridge-like cross-section [46]

[m]
15.200
3.450
1.450
2.155
1.295

L | 100

o Q0O O

Table 10: Bridge-like cross-section dimensions [46]

transverse shear stress for different beam models. A comparison in terms of stress
fields between the present beam and solid elements is given in Figure 21.

Shear correction factors are computed as in [47], K€, and [48,49], K€. The Pois-
son’s ratio is set equal to 0.2. Table 11 shows the values obtained with a comparison
with those from open literature. The static analysis of the bridge-like beam permit us
to underline what follows.
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Figure 20: Vectorial shear stress distribution at y = L/4 for different beam theo-
ries [43]

(b) 0y, Solid

......

©) gy +0,y, N =14 (@) 0y + 02y, Solid

Figure 21: Comparison of stress fields, [Pa], between the fourth-order beam and
solid elements [43]. y = L/2



K, | K
KC
N =1 | 1.000 | 1.000
N =2 |0.681]|0.961
N =3 |0.331|0.707
N=4 |0.320 | 0.689
KG
N =1 | 1.000 | 1.000
N =2 |0.672 ] 0.963
N =3 |0.330 | 0.699
N =4 |0.317 | 0.681
Sol. [46] | 0.231 | 0.599

Table 11: Shear correction factors for the bridge-like cross-section [43]

1. The enhanced capabilities of higher-order beam models are necessary to inves-
tigate the stress field distribution of an arbitrary cross-section structure. The
transverse shear stress components are those which are more sensitive to the use
of higher-order models.

2. Refined one-dimensional beam models are able to offer good agreement with
the results from three-dimensional solid element analysis with a significant re-
duction of computational and implementation costs.

3. The use as well as the definition of shear correction factors appears very much
questionable as has been pointed out by many authors: its definition is a problem
dependent parameter. The adoption of refined theories, in fact, offers a more
flexible approach that is independent of the features of the addressed structural
problem.

4.5 Beams made of FGM materials S [

Beams made of FGM materials are considered herein. Two cases are accounted for: a
beam undergoing a bending load and a beam undergoing a torsion-bending load.

Beam under Bending Loading

A square cross-section is considered, see Figure 22. Dimension a along = and z axes
equals 0.1 m. Deep beams (L/a = 5) are investigated. A unit maximal amplitude (1
MPa) for the surface loading is assumed. The material exhibits a gradation along both
z and z directions: Ey = 1000 MPa, «; such that E (a,0) /E; = E(0,a) /E; = 3
and 3; = 0 with 7 = 1 and 2. Poisson’s ratio equals 0.3. The proposed models are
compared with a three-dimensional FE solution (denoted FEM 3D) developed using
the MSC.Nastran commercial code. The eight-node brick element “HEXAS8” is used.
Element sides measure 2 - 102 m. Each element is considered as homogeneous by
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Figure 22: Square cross-section geometry and loading, beam made of FGM ma-
terials under bending loading

referring to the material properties at its center point.

Figure 23: In-plane warping at y/L = 0.5 [55]

Figure 23 presents the cross-section deformation at y/L = 0.5. The shape of the
deformation is due to the Young modulus variation law. Figs. 24 and 25 show the
bending stress component o,,. Results are computed at beam mid-span. The maps of
the shear stress component oy, are presented in Figs. 26 and 27. A fifth-order model
has been used. The following considerations can be drawn.

1. The fourth-order model matches the reference FE solution in terms of displace-
ments.
2. A first-order model yields an accurate description of the bending stress compo-
nent oy,. A fifth-order model is needed to detect the shear stress distribution.



Figure 24: o,, (MPa) at mid-span via Figure 25: o, (MPa) at mid-span via
FEM 3D [55] first-order model [55]

Figure 26: o,; (MPa) at y/L = 0 via Figure 27: 0,, (MPa) at y/L = 0 via
FEM 3D [55]. fifth-order model [55].

3. As far as the computational time is concerned, the proposed analytical models
require less than a second, regardless of the approximation order. The FE so-
lution based on the proposed models, not reported here, is obtained in a few
seconds for a very fine mesh. For the reference FEM 3D solution, the computa-
tional time is about five minutes.



Beam under Bending-Torsion Loading

A beam with a square cross-section subjected to a line loading is investigated. Cross-
section sides measure 100 [mm]. The span-to-height ratio is equal to 5. The loading
configuration and reference system are shown in Figure 28. Maximal loading ampli-
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Figure 28: Beam subjected to bending-torsion

tude is L, and m equals the unity. The material exhibits a gradation along both = and
z directions: Ey = 1000 N/mm?, a; such that E (b,0) /Ey, = E (0,a) /Ey = 3 and
0G; = 0with i = 1 and 2. Poisson’s ratio equals 0.3. Stress components are normalized
with respect to the ratio between the cross-section area and the loading resultant:

o T ab
(Jzz;azza Jz'yjo"yyao'zz) = EET (Jzzyazzaazyaayy,azz) (53)
22

The normal stress component @, is evaluated at (b, L/2,0). Shear stresses 7. and
Ty, are computed at (0,0,a/2) and (b/2,0, a), respectively. Components 7, and 7,
are evaluated at (4b/25, L/2,0) and (0, L /2, 3a/25), respectively. The proposed mod-
els are compared with a three-dimensional FE solution developed using the MSC.Nas-
tran commercial code. The eight-node brick element “HEXAS8” is used. Two element
sizes are considered: 4 x 2 x 2 mm (FEM 3D?) and 4 x 4 x 4 mm (FEM 3D°). The
three dimensions of each element are equal to 2 (FEM 3D?), 4 (FEM 3D°) mm. Each
element is considered as homogeneous by referring to the material properties at its
center point.

Figure 29 presents the deformation of the cross-section at mid-span for L/a = 5.
Table 12 presents the dimensionless stresses for L/a = 5. For solution FEM 3D¢,
shear stresses are computed as an average between two consecutive nodes since the
stresses are calculated at the element’s center and they are extrapolated out to the
corner points only. The sudden change in slope in the neighborhood of the loading
application area is due to the presence of a high displacement gradient. A higher
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Figure 29: Cross-section deformation at y = L/2 for L/a = 5, beam under
bending-torsion loading [56]

Eyy [ 2% Eyz ny
FEM 3D¢ —55559 2.6328 —5.4280 1.4465 1.9920
FEM 3D¢ -5.5550 2.6675 —5.5675 1.4586* 1.9658*
N=38 —5.6420 2.5120 -5.6689 1.4173  2.0032
N=7 —5.5082 2.0114 —4.8488 1.4440 2.0243
N=6 —5.5341 1.5355 —3.9423 1.4544  2.0409
N=5 —5.7766 1.0784 —2.9782 1.4762  2.0797
N=4 —5.6257 0.6734 -—2.0170 1.4589  2.0510
N=3 -5.3970 0.3021 -1.1304 1.0628 1.3239
N=2 —5.3173 0.0961 —-0.4096 0.9401 1.2334
N=1 —5.3332 0.0164 —-0.0660 0.8510 1.1875
TB —6.1078 — — 0.2568 —0.0939

Elements’ sides length: FEM 3D 2 x 2 x 2 mm; FEM 3D¢ 4 x 4 x 4 mm.
(%) Average value of two consecutive nodes.

Table 12: Dimensionless stresses for L/a = 5, bending-torsion loading [56].

number of nodes is required in that area in order to obtain a variation that is smoother
and closer to the actual behavior. The analysis of the beam undergoing a bending-

torsion loading highlights the following statements.

1. A tenth-order model yields very good results compared with solution FEM 3D¢
in terms of displacements.

2. Good results are obtained for the normal and shear stress components, being
the difference versus the three-dimensional solutions about 2% for N = 8, at

WOTISE.




3. In the case of the transverse normal stress components, the difference is about
5%. This is due to the fact that such components are computed in the neigh-
borhood of the loading application area and the stress field is highly three-
dimensional. The two reference FE solutions differ there by about 2.5%. In
this case a layer-wise approach is required. In such models, the displacement
field is locally approximated. This will be a matter for further development of
the proposed approach to the one-dimensional modeling.

4. As far as the computational costs are concerned, the proposed analytical models
require less than a second, regardless the approximation order. The FE solution
based on the proposed models, not reported here for the sake of brevity, is ob-
tained in few seconds for a very fine mesh. For the reference three-dimensional
FE solutions, FEM 3D requires about two hours, while for FEM 3D°¢ results
have been obtained after two minutes.

4.6 Effectiveness Analysis of Higher-Order Terms

The present unified beam formulation permits us to comprehend the role of each term
of a refined theory on a given structural problem. The investigation approach together
with several results have been presented in detail in [41]. Each term is deactivated
in turn and the effect of its absence is evaluated in terms of displacement and stress
components. If the absence of a term does not corrupt the solution with respect to a
reference value, the term itself will be considered as noneffective in computing the
solution for the considered structural problem. The bending analysis is considered
herein. A compact rectangular cross-section is considered first. The displacement
field which is able to detect a full fourth-order solution in terms of displacement com-

ponents is the following: )

Up = TZ Ugg + T3Z Ugy, + T2° Ugy,

_ 2 3
Uy = 2 Uyy + T2 Uyg + 27 Uy, (54)
Uy = Uy + 22 s + 7% uyy, + 2222 Uy, + 24 uyy,

In other words, only 11 terms are effective in determining the displacement field of a
compact beam undergoing a bending loading. The beam theory described by Equation
54 is graphically represented in Table 13 where the black symbols indicate the active
terms of the fourth-order model. M. states the number of active terms.

A thin-walled structure is considered as a second assessment. The related set of
active terms is given by:

Up = Ug, + T Ugy + T2 Up, + T2 Uy + 2% Ugg + T3 Ugy + T22 Ugy + 25 Uy,
+z* Ugy, T 32 Uz, + +1%2* Ugyy + 223 Uy, + 24 Ugqg
- 2 2 3 2 3
Uy = uy14+ Z Uy, "'2552 Uy, + T2 Zys 2% Uy + T Uy, + T2 Uyg + 27 Uy
+z Uyys +z°2 Uyra ++z U5
Uy = Uy + 2 Ugy + T2 Uy + T2 Uy + 22 Upg + 322 Uy + T2% uyy + 22 Uy,

2

3 2 3 4
+x°2 Uy, + T2 U, ++T27 Uy, + 27 Uy,

(35)
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Table 13: Active displacement variables for a compact cross-section beam under- e y /
going a bending load [41] A

Table 14 shows the graphical version of the beam theory considered.

Mgl M
Bending
36/45 A | A|(A|A|A|A|A|A|A | A|A | A | A A A
A|A|[A|A|A|A|A A A|A|A|A|A|A]|A
A|A | A|A|A|A|A|A|A|A||A|A|A|A|A

Table 14: Active displacement variables for different loading cases and cross-
sections [41]

Similar analyses have been conducted on several structural cases (e.g. torsion and
traction loads, slender and short beams, etc.). The results from the effectiveness anal-
ysis suggests what follows.

1. The set of active terms depends on the given structural problem, this dependence
is extremely strong.

2. An important increase of terms is observed whenever thin-walled structures as
well as torsional loading conditions are considered.

3. A set which is able to detect an output variable can be unable to predict another
one, that is, if different outputs are requested different beam theories should be
used.

4. All these aspects make the use of full refined theories more attractive in most of
the cases.



5 Conclusion

This chapter has presented a unified formulation for higher-order beam theories. Re-
fined models have been obtained by employing the Carrera unified formulation (CUF)
which permits us to deal with any-order of beam theories without need of ad hoc im-
plementations. In other words, the order of the theory is considered as an input of the
analysis. Classical models (Euler-Bernoulli and Timoshenko) have been obtained as

particular cases of the linear model. Closed form, Navier type solution and finite el- -

ement formulations have been adopted. Arbitrary cross-section geometries have been

considered. Static and free vibration analyses have been conducted. Isotropic and. .- /

FGM materials have been used. The results obtained have been compared with those
available from literature, with analytical approaches, and shell/solid finite element
models.

The proposed unified approach has shown its strength in dealing with several dif-
ferent structural problems. There are several important features to be pointed out.

1. Higher order beam models are mandatory in the case of: short beams, thin-
walled structures, FGM constitutive materials.

2. The use of refined beam models allows us to obtain detailed displacement and
stress fields.

3. A wide set of non-classical effects can be detected (e.g. in- and out-of-plane
warping, bending/torsion coupling, shear effects, ezc.).

4. The results are in excellent agreement with those furnished by shell and solid
elements.

5. The computational cost is particularly low with respect to the ones requested by
shell and solid element models.

The adoption of refined theories offers a flexible approach that is independent of the
features of the addressed structural problem. CUF makes this approach particularly
attractive since its hierarchical capabilities, together with the possibility of addressing
arbitrary geometries, permit us easily to obtain results which are usually furnished by
more cumbersome two- or three-dimensional models. Future investigations could be
directed towards considering aeroelastic applications and dynamic responses.
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