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ABSTRACT: This paper presents plate and shell models for multifield problems and proposes methodologies
to refine structural models according to given accuracy and computational cost requirements. In multifield
problems for multilayered structures, refined models are necessary to deal with many non-classical effects due,
for instance, to the presence of large variations of properties among layers. In such research scenario, the Carrera
Unified Formulation (CUF) is a well-established framework. Via the CUF, the 3D structural problem is reduced
to a 2D or 1D one. In other words, the 3D unknown variables become 2D or 1D, and expansion functions
along the thickness or the cross-section of the structure define the order of the model, or computational cost,
and its accuracy. CUF models proved to be able to detect 3D-like accuracies in multifield structural problems
with very low computational costs. In the CUF framework, the axiomatic-asymptotic method (AAM) has been
recently proposed by the authors to investigate the influence of each unknown variable on the solution of a given
problem. And, via the AAM, Best Theory Diagrams (BTD) have been obtained in which the minimum number
of terms of a refined model for a given accuracy can be read. The BTD generates guidelines to develop and
evaluate structural models. In other words, via the BTD, a trade-off between accuracy and computational cost
can be made. In this paper, mechanical, thermal and electrical fields are considered and BTDs are presented for
various problems.

1 INTRODUCTION

Many engineering structures require multifield analy-
ses for their proper design. For instance, thermal and
mechanical loads and interaction thereof are impor-
tant for space vehicles, and turbine blades. Piezoelec-
tric and mechanical loads are fundamental in smart
structures. The accurate structural analysis of such
structures requires refined structural models to cap-
ture non-classical effects. In particular, the present pa-
per presents plate and shell models for multifield anal-
ysis and a technique to build best models for given
problems.
The refinement process of a plate or shell model,
referred to as 2D models, is aimed at the improve-
ment of the accuracy of classical models, such as
the Kirchoff-Love (Kirchhoff 1850, Love 1927) and
Reissner-Mindlin theory (Reissner 1945, Mindlin
1951). Examples of refined 2D models are those
by Vlasov (1957), Hildebrand, Reissner, & Thomas
(1938), and the Zig-Zag model of Lekhnitskii (1968).
In the case of multilayered structures, models are
usually developed according to two approaches, the
Equivalent Single Layer (ESL) and the Layer Wise
(LW) schemes. According to the ESL scheme, the

number of the unknowns are not affected by the num-
ber of layers, while, in the LW scheme, each layer of
the plate has its displacement unknowns, and, there-
fore, the number of unknowns of the model is related
to the number of layers of the plate (Reddy 1997).
A review of methodologies for thermoelasticity can
be found in (Hetnarski & Eslami 2009). 2D structural
models for thermoelasticity have been developed over
the last decades for isotropic, anisotropic and hetero-
geneous structures (Tauchert 1991, Noor & Burton
1992, Murakami 1993, Argyris & Tenek 1997). Par-
ticular attention was paid to predictor-corrector proce-
dures, the effect of the temperature-dependence of the
material properties, and the sensitivity of the thermo-
mechanical response to variations in the material pa-
rameters, and non-linear effects.
Electromechanical effects must be considered in
piezoelectric structures. Such systems are being in-
creasingly used as sensors, actuators and energy har-
vesters for various applications, including control and
health-monitoring. 2D, reference ESL structural mod-
els for piezoelectric structures can be found in (Tier-
sten 1969, Mindlin 1972, Yang & Yu 1993). On the
other hand, an LW model for the electric potential
coupled with an ESL displacement field can be found
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ux = ux1 + zu x2

uy = zuy1 + z3uy4

uz = uz1 + zuz2 + z2uz3 + z4uz5

Figure 1: The Best Theory Diagram.

in (Mitchell & Reddy 1995).
This work makes use of the Carrera Unified Formula-
tion (CUF) to build refined 2D models (Carrera et al.
2014). The CUF introduced a systematic approach to
develop any-order structural model via a few funda-
mental nuclei whose formal expressions do not de-
pend on the order of the model nor on the type of
expansions adopted to describe the unknown vari-
able fields (Carrera 2003). In particular, ESL, LW and
mixed variational formulations can be implemented
(Carrera et al. 2011). The CUF has been extensively
used for multifield analyses over the last years. Refer-
ence works are those by Carrera (2002) and Ballhause
et al. (2005).
In the CUF framework, the axiomatic-asymptotic
method (AAM) has been recently proposed by the
authors to investigate the influence of each unknown
variable on the solution of a given problem (Car-
rera & Petrolo 2010, Carrera & Petrolo 2011). In the
AAM, a starting model is used with a full expansion
of variables. Then, the influence of each variable, or
groups of variables, is evaluated by deactivating it.
Only those variables exhibiting an influence are re-
tained and reduced models are built in which the num-
ber of unknown variables are less or equal to the start-
ing, full model. The method can be iterated to evalu-
ate the influence of characteristic parameter such as
thickness or orthotropic ratios, similarly to an asymp-
totic method. Recently, the AAM has been applied
to multifield problems (Cinefra et al. 2015, Carrera
et al. 2015). The systematic use of CUF and AAM
has then led to the definition of Best Theory Diagrams
(BTD) in which, for a given accuracy and problem,
the minimum number of required unknown variables
can be read, as shown in Fig. 1. The BTD can be seen
as a tool to evaluate the accuracy and the computa-
tional efficiency of any given structural model against
the best available. The BTD for multifield problems
has been recently presented in (Cinefra et al. 2017).
This paper is organized as follows: the CUF is intro-
duced in Section 2, governing equation in Section 3,
the AAM and BTD in Section 4. The results are pre-
sented in Section 5 and Conclusions in Section 6.

2 CARRERA UNIFIED FORMULATION

In the CUF, the displacement field for a 2D model can
be written as

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, . . . ,N + 1 (1)

where the Einstein notation is assumed on the index
τ . u is the displacement vector (ux uy uz). Fτ are the
so-called thickness expansion functions and uτ is the
vector of the generalized unknown displacements. In
ESL, Fτ are defined on the overall thickness of the
plate, while, in LW, for each k-layer. For ESL, Fτ can
be Mc-Laurin expansions of z, defined as Fτ = zτ−1.
In the following, the ESL models are indicated as
EDN, in whichN is the expansion order. For instance,
the ED3 displacement field is

ux = ux1 + z ux2 + z2 ux3 + z3 ux4
uy = uy1 + z uy2 + z2 uy3 + z3 uy4
uz = uz1 + z uz2 + z2 uz3 + z3 uz4

(2)

LW models can be obtained via Legendre polynomial
expansions in each layer,

uk = Ft · ukt + Fb · ukb + Fr · ukr = Fτu
k
τ

τ = t, b, r r = 2,3, . . . ,N k = 1,2, . . . ,NL

(3)

where NL is the number of the layers. Subscripts t
and b correspond to the top and bottom surfaces of
the layer. Functions Fτ depend on the coordinate ζk,
−1 ≤ ζk ≤ 1. Fτ are linear combinations of the Leg-
endre polynomials,

Ft = P0+P1

2
Fb = P0−P1

2
Fr = Pr − Pr−2 r = 2,3, . . . ,N

(4)

In the following, the LW models are denoted by the
acronym as LDN, where N is the expansion order.
For instance, LD3 is

ukx = Ft u
k
xt + F2 u

k
x2 + F3 u

k
x3 + Fb u

k
xb

uky = Ft u
k
yt + F2 u

k
y2 + F3 u

k
y3 + Fb u

k
yb

ukz = Ft u
k
zt + F2 u

k
z2 + F3 u

k
z3 + Fb u

k
zb

(5)

ESL and LW descriptions can be used for multifield
variables, such as temperature or potential. For in-
stance, the LW description of the temperature distri-
bution is

θk(x, y, z) = Ft · θkt (x, y) + Fr · θkr (x, y)+
+Fb · θkb (x, y) = Fτθ

k
τ (x, y)

(6)

where θkτ are

θkτ = θ
k

τ − θe (7)



θ
k

τ is the effective temperature distribution. The tem-
perature distribution can be defined by solving the
conduction equation for a given temperature distri-
bution over the lateral, top and bottom surfaces. The
approach proposed in Eq.(6) offers the possibility to
impose the continuity of the temperature distribution
along the thickness direction. In (Carrera 2002), fur-
ther details on the temperature distribution evaluation
can be found. On the other hand, assumed profiles can
be used, such as the linear one,

θz = θ0
z

2 z

h
+ θ0 (8)

where h is the total thickness of the plate and the pa-
rameters θ0

z and θ0 are the imposed top and bottom
values.
In an electro-mechanical problem, the potential distri-
bution can be defined as

Φk = FtΦ
k
t + FrΦ

k
r + FbΦ

k
b = FτΦ

k
τ

τ = t, r, b r = 2,3, . . . ,N
(9)

3 CONSTITUTIVE AND GOVERNING
EQUATIONS

In this section, a brief overview of some of the consti-
tutive equations adopted for multifield problems are
given. For a more comprehensive overview, books
from the authors can be referred to (Carrera et al.
2014, Carrera et al. 2011). Linear strain-displacement
relations are assumed and strain components are
grouped into in-plane (p) and out-of-plane (n), com-
ponents,

εkp =
[
εkxx ε

k
yy ε

k
xy

]T
εkn =

[
εkxz ε

k
yz ε

k
zz

]T
(10)

For the pure mechanical case, stress components for
a generic layer k can be obtained by means of the
Hooke law,

σk = Ckεk (11)

The virtual variation of the strain energy is

δ Lkint =
∑NL

k=1

∫
Vk

(
δεkp ·σkp + δεkn ·σkn

)
dVk =∑NL

k=1

∫
Ωk

∫
Ak

(
δεkp ·σkp + δεkn ·σkn

)
dΩk dzk

(12)

In the case of the uncoupled thermo-mechanical anal-
ysis, thermal stresses are given by

σkpT = Ck
pp · εkpT + Ck

pn · εknT
σknT = Ck

pn · εkpT + Ck
nn · εknT

(13)

Via the thermal expansion coefficient vector α,

εkpT =
{
αk1, α

k
2, 0

}
θk(x, y, z) = αkpθ

k

εknT =
{

0, 0, αk3
}
θk(x, y, z) = αknθ

k (14)

where θk(x, y, z) is the relative temperature distribu-
tion in a generic k layer referred to a reference tem-
perature θe. The virtual variation of the strain energy
is

Nl∑
k=1

∫
Ωk

∫
Ak

(
δεk

T

p σ
k
p + δεk

T

n σ
k
n

)
dzk dΩk (15)

where stresses σp and σn are considered as the sum
of the mechanical (H) and thermal (T ) contributions,

σp = σkpH −σkpT
σn = σknH −σknT

(16)

The constitutive equations for piezoelectric materials
are

σk = Ckεk − ek
T

Ek

D̃k = ekεk + εkEk (17)

where D̃k is the dielectric displacement and Ek is the
electric field. ek is the matrix of the piezoelectric con-
stants,

ek =

 0 0 0 ek14 ek15 0
0 0 0 ek24 ek25 0
ek31 ek32 ek36 0 0 ek33

 (18)

and εk is the matrix of the permittivity coefficients of
the k-layer,

εk =

 εk11 εk12 0
εk21 εk22 0
0 0 εk33

 (19)

Introducing the usual in-plane (p) and out-of-plane (n)
grouping,

σkp = Cppε
k
pp + Cpnε

k
pn − ek

T

p Ek

σkn = CT
pnε

k
pp + Cnnε

k
pn − ek

T

n Ek

D̃k = ekpε
k
p + eknε

k
n + εkEk (20)

The electric field Ek can be derived from the Maxwell
equations,

Ek = DeΦ
k (21)

where Φk is the electric potential. The virtual varia-
tion of the strain energy is

∑NL

k=1

∫
Vk

(
δεk

T

p σ
k
p + δεk

T

n σ
k
n − δEkT D̃k

)
dVk

(22)



The governing equations are obtained substituting the
geometrical relations, the constitutive equations and
the variable assumptions via CUF in the variational
statements. The derivation is herein omitted for the
sake of brevity; details can be found in the already
mentioned CUF works and books.
The governing equations in the case of pure-
mechanical analysis can be written as

δuk
T

s : Kkτs
d ukτ = Pτ

dτ (23)

and the boundary conditions on the edge Γk as

δuk
T

s : uτk = uτk or Πkτs
d ukτ = Πkτs

d ukτ (24)

where Pτ
dτ is the external load. The fundamental

nucleus of the stiffness matrix, Kτs
d , is assembled

through the indexes τ and s, which consider the or-
der of the expansion in z for the displacements. Πkτs

d
is the fundamental nucleus of the boundary conditions
deriving from the integration by parts of the PVD. The
explicit form of the fundamental nuclei can be found
in (Carrera 2003).
The governing equations for the thermo-mechanical
problem, that are

δuk
T

s : Kkτs
uu ukτ = −Kkτs

uθ θ+ pkus (25)

with the related boundary conditions are

δuk
T

s : uτk = uτk or Πkτs
uu ukτ = Πkτs

uu ukτ (26)

The temperature is considered as an external load and
it is assigned. The definition of the fundamental nu-
clei Kkτs

uu , Kkτs
uθ and Πkτs

uu can be found in (Carrera &
Brischetto 2010).
The governing equations for the electro-mechanical
problem are:

δusk : Kkτs
uu ukτ + Kkτs

ue Φk
τ = pkms

δΦs
k : Kkτs

eu ukτ + Kkτs
ee Φk

τ = pkes (27)

with the boundary conditions,

δusk : uτk = uτk or
Πkτs
uu ukτ + Πkτs

ue Φk
τ = Πkτs

uu ukτ + Πkτs
ue Φ

k

τ

δΦs
k : Φτ

k = Φ
τ

k or
Πkτs
eu ukτ + Πkτs

ee Φk
τ = Πkτs

eu ukτ + Πkτs
ee Φ

k

τ

The definition of the fundamental nuclei Kkτs
uu , Kkτs

ue ,
Kkτs
eu , Kkτs

ee , Πkτs
uu , Πkτs

ue , Πkτs
eu and Πkτs

ee can be found
in (Ballhause et al. 2005).
In the CUF, the adoption of the fundamental nucleus
to assemble the problem matrices allows us to set the
order and the type of the expansion as an input of the
analysis. In other words, the theory of structure to be
used is an input of the analysis.

Table 1: ED4 model with uy3 inactive.
z0 z1 z2 z3 z4

N N N N N
N N M N N
N N N N N

4 THE AXIOMATIC/ASYMPTOTIC METHOD
AND BEST THEORY DIAGRAMS

In the CUF framework, the axiomatic/asymptotic
method (AAM) has been recently developed to evalu-
ate the influence of an unknown variable on a given
structural problem as we vary the problem charac-
teristics, e.g. thickness, orthotropic ratio, stacking se-
quence, etc.. Also, the AAM leads to the definition
of reduced models with a lower computational costs
than full models but with the same accuracy (Carrera
& Petrolo 2010, Carrera & Petrolo 2011). A typical
AAM analysis consists of the following steps:

1. Parameters, such as the geometry, BC, loadings,
materials and layer layouts, are fixed.

2. A starting theory is fixed (axiomatic part). That
is, the displacement field is defined; usually a
theory which provides 3D-like solutions is cho-
sen and a reference solution is defined.

3. The CUF is used to generate the governing equa-
tions for the theories considered.

4. The effectiveness of each term of the adopted ex-
pansion is evaluated by measuring the error due
to its deactivation.

5. The most suitable structural model for a given
structural problem is then obtained discarding
the non-effective displacement variables.

A graphical notation is introduced to show the results.
It consists of a table with three lines, and columns
equal to the number of the variables used in the ex-
pansion. For example, if an ED4 model is considered
with uy3 deactivated, the displacement field is

ux = ux1+ z ux2+ z2 ux3+ z3 ux4+ z4 ux5
uy = uy1+ z uy2+ + z3 uy4+ z4 uy5
uz = uz1+ z uz2+ z2 uz3+ z3 uz4+ z4 uz5

(28)

Such a displacement field is depicted by Table 1. The
use of the AAM can be extended to all the possible
combinations of active/inactive variables of a given,
starting theory. Each reduced model can be related to
the number of the active terms and its error computed
on a reference solution as reported in Fig. 1. The er-
ror values are reported on the abscissa, and the num-
ber of active terms is reported on the ordinate. Each



black dot represents a reduced refined model and its
position on the Cartesian plane is defined consider-
ing its error and the number of the active terms. Also,
the representation of the active/non-active terms is re-
ported for some reduced models. Among all the mod-
els, it is possible to note that some of them present the
lowest error for a given number of active terms. These
models are labeled as 1, 2, 3, 4, 5, and they represent a
Pareto front for the considered problems. The Pareto
front is defined in this work as the Best Theory Dia-
gram. This curve can be constructed for several prob-
lems, for example considering several type of mate-
rials, geometries and boundary conditions. Moreover,
the information reported in a BTD makes it possible
to evaluate the minimum number of terms, Nmin, that
have to be used to achieve the desired accuracy.
The BTD can be obtained via genetic algorithms in
which each structural theory is considered as an in-
dividual. The genes are the terms of the expansion,
and each gene can be active or not active as in Fig. 2.
Each individual is, therefore, described by the number

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 2: Generalized variables as genes in a genetic algorithm.

of active terms and its error computed on a reference
solution. Through these two parameters, it is possible
to apply the dominance rule in order to evaluate the
individuals fitness. For each individual copies are cre-
ated according to its dominance and then, some mu-
tations are applied to vary the set of new individuals.
The purpose of this analysis is to find the individuals
which belong to the Pareto front, that is the subset of
individuals which are dominated by no other individ-
uals.

5 RESULTS

First, a simply-supported multilayered plate is consid-
ered under a transverse pressure distribution, a tem-
perature distribution and an electric potential distribu-
tion, separately. For the mechanical case, the pressure
distribution is

pz = p0
z sin

(mπ

a
x
)

sin
(nπ
b
y
)

(29)

wherem and n are equal to 1, the pressure distribution
is applied to the top surface of the plate, and a= b= 1.

For the thermal case, temperature distribution defined
as in

θkτ = θ̂kτ sin
(
mπxk
ak

)
sin
(
nπyk
bk

)
(30)

and Eq. (8), with (ttop, tbot) equal to 1 and -1, respec-
tively. For the piezoelectric case, two different con-
figurations were considered, the sensor and actuator
configurations. In the sensor case, a transverse pres-
sure is applied to the top surface of the plate and the
potential distribution is evaluated. The potential at the
top and bottom is set to zero. In the actuator case, a
potential distribution is applied to the plate, and the
value of the potential is set to 1 V at the top and to
0 V at the bottom. In the sensor case, the pressure is
assumed as in Eq.(29), while, in the actuator case, the
potential distribution is assumed as

Φ = Φ sin
(mπ

a
x
)

sin
(nπ
b
y
)

(31)

where m = n = 1 and Φ is set equal to 1. The
material properties for the mechanical and thermal
cases are EL/ET = 25, GLT/ET = GTT/ET = 0.5,
GLz/ET = 0.2, ν = 0.25 and αL/αT = 1125, where
E is the Young’s modulus, G the shear modulus, ν
the Poisson’s ratio and α the coefficient of thermal
expansion. L and T are the directions parallel and
transverse to the composite fibers, respectively. For
the piezoelectric case, the material properties of the
laminated layers are: E1 = 132.38 × 109 Pa, E2 =
E3 = 10.756 × 109 Pa, G12 = G13 = 5.6537 × 109

Pa, G23 = 3.606 × 109 Pa, ν12 = ν13 = 0.24, ν23 =
0.49, ε11 = 3.098966 × 10−11 C/Vm, ε22 = ε33 =
2.6562563 × 10−11 C/Vm. The thickness for each of
these layers is equal to h = 0.4 · hTOT. The piezoelec-
tric layers are made of PZT-4 and their properties are
E1 = E2 = 81.3× 109 Pa, E3 = 64.5× 109 Pa, ν12 =
0.329, ν13 = ν23 = 0.432, G44 = G55 = 25.6 × 109

Pa, G66 = 30.6 × 109 Pa, e31 = e32 = −5.20 C/m2,
e33 = 15.08 C/m2, e24 = e15 = 12.72 C/m2, ε11/ε0 =
ε22/ε0 = 1475, ε33/ε0 = 1300 (ε0 = 8.854 × 10−12

C/Vm). The thickness of these layers is equal to h =
0.1 · hTOT. The BTDs reported in this work are based
on the solution computed using the LD4 model. In
fact, the LD4 proved to be in excellent agreement
with the elastic solutions (Carrera 2003, Carrera 2002,
Ballhause et al. 2005).
The ESL approach is considered, and the BTDs for
the ED4 model are given in Fig.s 3 and 4 for the thin
and thick geometry, respectively. The results suggest
that reduced refined models for the piezoelectric case
have a higher computational cost than the reduced
models for the mechanical and thermal case, since the
variables of the electric potential are retained. Models
located on the BTD for both the thermal and mechan-
ical cases have the same accuracy when a thin plate
is considered, while the BTDs for the piezoelectric
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Figure 3: BTDs for a/h = 100.
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Figure 4: BTDs for a/h = 4.

case present a significant difference between the sen-
sor and actuator configuration. Since the reference so-
lution is obtained with an LD4 model, the minimum
errors are larger than zero. In fact, the LD4 offers a
better accuracy than ED4.
A composite shell is then considered under a pure me-
chanical load, see Eq. 29. The material properties are
EL/ET = 25, ν = 0.25, GLT/ET = GTT/ET = 0.5,
GLz/ET = 0.2 and the dimensions of the shell are
a = 4Rβ and b = 2πRβ . A 0◦/90◦ stacking sequence
was considered. Figure 5 shows the BTD for stress
and displacement components. Significant differences
in the BTD for different outputs are observable. Table
2 shows some of the BTD models. In this case, the
FSDT is a BTD.
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Figure 5: BTD for the asymmetric composite shells, Rβ/h = 4.

Table 2: BTDs for the asymmetric composite shell, σαα.
Rβ/h = 100
Me/M = 9/15

N N M M M
N N N N M
N N N M M

Error 2.6671 %
Me/M = 5/15

N N M M M
N N M M M
N M M M M

Error 8.4968 %

6 CONCLUSIONS

This paper has presented some of the latest advances
in the framework of the Carrera Unified Formulation
(CUF). In particular, multifield problems for multi-
layered plates and shells have been addressed. The
CUF is an established formulation to develop refined
structural models via expansion functions. The order
and the type of the expansions are free parameters
of the analysis. In particular, Equivalent Single Layer
(ESL) and Layer-Wise (LW) approaches can be han-
dled straightforwardly.
In this work, a brief overview of the Ax-
iomatic/Asymptotic Method (AAM) has been given.
The AAM has been recently developed in the CUF
framework and has two main capabilities,

• A starting structural model is set, and the influ-
ence of each unknown variable on a given struc-
tural problem is quantified as the problem char-
acteristics vary (e.g. thickness, orthotropic ratio,
stacking sequence, etc.). In other words, starting
from an axiomatic approach, asymptotic-like re-
sults can be obtained.

• By retrieving only those terms that influence the
solution, reduced models as accurate as the full
models but computationally more efficient are
built.

The systematic use of the AAM has led to the intro-
duction of the Best Theory Diagram (BTD). A ’best
theory’ is the one that, for a given number of un-
known variables, provides the best accuracy or, for
a given accuracy, the one with the minimum number
of unknown variables. In the BTD, all the best struc-
tural models can be read. The BTD can be considered
as the Pareto Front of an optimization problem and
provides guidelines to develop structural models. In
fact, The BTD provides the boundary of the trade-off
between accuracy and computational costs. In other
words, accuracy cannot be increased and computa-
tional cost lowered better than the BTD.
The results show that the combined use of CUF and
AAM provides insights related to the decision making
in structural model choices and developments. In par-
ticular, the reduced models greatly increase the com-
putational efficiency in the LW case. Also, the use of



genetic algorithms to obtain the BTD is a powerful
strategy to obtain structural guidelines for any prob-
lem.
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